JÖVŐ
A Rovatból

A vegyszerek és a klímaváltozás is veszélyezteti őket - így védhetnénk meg a méheket és a beporzókat

A méhek rendkívül érzékenyek a környezet változásaira, az időjárási viszonyokra, a levegőminőségre vagy a táj megváltozására. Pedig nélkülözhetetlenek az ökoszisztémák működéséhez, az emberi jóléthez és az élelmezésbiztonsághoz.

Link másolása

Évente 5 milliárd euró (közel 2000 milliárd forint) értékben profitál a beporzó rovarok munkájából az európai mezőgazdaság, miközben ezek az élőlények az ökoszisztémák működéséhez és élelmezésbiztonságunkhoz is alapvetően járulnak hozzá. Az Európai Parlament által még nyáron jóváhagyott természet-helyreállítási törvényjavaslat ezért kiemelt figyelmet szentel a beporzók védelmének, amire egyre nagyobb szükség is van. Bár globálisan mind a méhcsaládok, mind az általuk létrehozott méhészeti termékek (méz, viasz, propolisz, virágpor, méhkenyér stb.) mennyisége nő, az nem képes lépést tartani az emberiség növekvő létszámával és vele együtt az igényekkel. Európában még csökkent is a méhkolóniák száma, míg a méztermelés mennyisége nőtt, ami fokozódó kiszolgáltatottságot vetít előre – a jövőben egy méhcsaládnak sokkal több embert kellene ellátnia, mint most. A legnagyobb veszélyt a földhasználat változásból fakadó élőhely csökkenés és a vegyszerek jelentik, amihez gyorsan zárkózik fel a klímaváltozás, ami a mostani növekvő mézhozamot is negatívba fordíthatja. A méhek rendkívül érzékenyek az őket körülvevő környezet változásaira, legyen szó időjárási viszonyokról, a vegetációs időszak eltolódásáról, levegőminőségről vagy a táj megváltozásáról (pl. fakivágás). A biodiverzitás fenntartása (vadméhek, egyéb beporzók), nem kizárólag a házi méhekre való támaszkodás azért is fontos, mivel méheink nem minden növény megporzására képesek alaktani felépítésük miatt, illetve a különböző méhfajok különböző virágokat is kedvelnek. Elemi érdekünk a természet-helyreállítási törvény végrehajtása, a növényvédő szerek visszaszorítása és a klímaváltozás mérséklése, hogy ne sérüljön az élelmiszerbiztonság és a mezőgazdaság.

Leelőssyné Tóth Eszter fotója.

Az európai élőhelyek 81%-a rossz állapotban van, amely a beporzók, különösképp a mézelő méhek természetes élőhelyeit is érinti. Az Európai Parlament által jóváhagyott természet-helyreállítási törvényjavaslat ezért a beporzók védelmére is nagy hangsúlyt fektet. Célja a biodiverzitás és a természetes élőhelyeknek a védelme és rekultivációja. Kiemelt témaköre a beporzók populációjának csökkenésének visszafordítása, egy növekvő trend elérése és ennek folyamatos vizsgálatára egy egységes módszertan kidolgozása

A beporzók a vad és a termesztett növények beporzása révén alapvető fontosságúak a szárazföldi ökoszisztémák működéséhez, az emberi jóléthez és az élelmezésbiztonsághoz.

Az EU éves mezőgazdasági termelése csaknem 5 milliárd euró értékben profitál a beporzó rovaroknak köszönhetően, ez közel 2000 milliárd forint.

Az elmúlt évtizedben azonban drasztikusan lecsökkent a beporzó rovarok száma az Unióban. Minden harmadik méh- és lepkefaj visszaszorulóban van, és minden tizedik ilyen faj a kihalás szélén áll. Emellett számos más előnye is van a szabályozásnak, ideértve a kártevők elleni biológiai védekezést és a biodiverzitás általános javulását.

A maximumot hajtjuk ki a méheinkből, kérdés, hogy ez fenntartható?

Ha csak a házi méheket (Apis mellifera) tekintjük, globálisan a méhcsaládok száma 1961–2017 között megduplázódott, a termelt mézmennyiség triplázódott, és a termelt méhviasz is duplázódott.

Ha az emberi népesség növekedésére vetítjük a méhcsaládok számát, akkor viszont 23,9%-os csökkenés tapasztalható a kolóniák számában és 15,6%-os növekedés a termelt méz mennyiségében.

Tehát gyorsabban nő az emberiség létszáma, amivel a méhpopuláció nem tud lépést tartani, így a jövőben egy-egy méhcsaládnak több embert kell ellátnia, mind mézzel, mind méhészeti termékekkel (viasz, propolisz, virágpor, méhkenyér stb.), ami komoly gondokat jelenthet.

Regionálisan még nagyobb különbségek vannak, Európában a kolóniák száma 11,6%-kal csökkent, viszont a termelt méz mennyisége 46%-kal és a méhlegelők területe 117,8%-kal nőtt. A legnagyobb növekedést háziméh populációban és méztermelésben Ázsia érte el, a sorban őt követte Dél-Amerika és Afrika.

A méhcsaládok globálisan növekvő száma ellenére az 1 főre jutó, háziméhek által megtermelt méhészeti termék (viasz) csökken, amely egyre kiszolgáltatottabbá tesz minket.

A fő veszélyforrások: élőhelycsökkenés, vegyszerek, klímaváltozás, légszennyezés

A Vörös Lista alapján eddig összesen 1887 fajt vizsgálva 35%-a az Apoidea családnak nem fenyegetett, 5,32% mérsékelten fenyegetett, 3,72%-a sebezhető, 2,34%-a veszélyeztetett és 0,16%-a súlyosan veszélyeztetett kategóriába került. A méhek vizsgálatánál viszont nagy gond, hogy elég nagy az adathiány (52,71%).

A legnagyobb problémát a különféle vegyszerek használata jelenti a földhasználat, földgazdálkodás megváltozása mellett.

A vegyszerek összetétele mellett a kijuttatás időpontja is fontos kérdés. A repülő rovarok hátára permetezett vegyszer akár halálos is lehet. A vegyszerek hatása fajonként viszont különböző, vannak olyan fajok, amelyek kevésbé érzékenyek és vannak, amelyek kisebb dózis hatására is elpusztulhatnak. Például egy összefoglaló tanulmány alapján a fullánk nélküli méhek (M. scutellaris, N. perilampoides, S. postica, T. iridipennis, T. nigra and T. spinipes) sokkal érzékenyebbek a peszticidek használatára, mint a házi, vagy mézelő méhek (Apis mellifera).

Emellett egyre nagyobb szerepet kap a vizsgálatban a klímaváltozás és az összeadódó stresszfaktorok is. A növekvő hőmérséklet akár 70%-kal növeli a gyűjtési időt, így egy forróbb nyári napon sokkal kevesebbet gyűjtenek, emellett energiájukat a kaptár hűtésére, a páratartalom fenntartására kell fordítani. Egyes kutatások emiatt

a mézhozam csökkenését prognosztizálják a klímaváltozás hatásai miatt.

Ez nem egy jövőbeli lehetséges probléma, a növekvő szárazság, hőmérséklet és a kiszámíthatatlan időjárás már manapság is megnehezíti a méhészek munkáját.

Hazánkban a fehér akác (Robinia pseudoacacia) jelenti a méhészek egy nagy bevételi forrását, amelynek virágzása az emelkedő hőmérsékleteknek köszönhetően egyre korábbra tolódik, így a fagyveszélynek a kockázata is növekszik. Magyarországon az 1950–2000-es évek között a Robinia pseudoacacia évtizedenként átlagosan 1,9–4,4 nap eltérést mutatott a virágzás kezdetében. A hőmérséklet növekedése a fehér akác vegetációs időszakának hosszabbodását eredményezi. A méhekre viszont nemcsak közvetett módon (pl. a virágok nektártermelésén keresztül), hanem közvetlenül is hatással van az időjárás.

Több kutatás is megerősítette, hogy mind a csapadék, fényviszonyok, hőmérsékleti, légnedvességi értékek befolyással vannak a méhek viselkedésére és gyűjtésére. Egy hosszabb csapadékos, esős időszak előtt például a méhek többet gyűjtenek, illetve a zivatarok közeledtét is érzékelik. Hatással van rájuk a levegőminőség, a fény polarizációja.

Érzékelik a légnyomás, hőmérséklet változását, különféle feromonokkal figyelmeztetve egymást. A Nap segítségével tájékozódnak, így egy felhősebb idő is megnehezíti nekik a visszatalálást a kaptárba. Rendkívül érzékenyek az őket körülvevő környezet változására és ezt jelzik is egymásnak (méhtánccal, feromonokkal). A szabadban nemcsak színek, de tereptárgyak alapján is tájékozódnak, így

ha megváltoztatjuk a környezetet (kivágunk egy erdőt, fát), nehezebben találnak vissza a kaptárba.

Ezért sokszor a méhészek színes formákat, mintákat festettek a kaptárra, valamint a röppályáját is úgy igyekeznek beállítani, hogy az a legideálisabb legyen. Egy-egy méhlegelő kiválasztásánál, ha a helyszín is úgy engedi, a méheket a völgyben, vagy mélyebben fekvő területekre helyezik, el, így megkímélve őket, hogy hazafelé “megrakottan” felfelé kelljen repülniük. Ezenkívül kis röpdeszkákkal segítik a leszállást a kaptárba.

Továbbá az invazív ragadozó rovarok, új méhbetegségek is komoly problémát okozhatnak. Itthon legnagyobb probléma jelenleg a Varroa atkás elhullásokkal van. Ezek ellen tejsavval, oxálsavval és különféle bio készítményekkel igyekeznek védekezni a méhészek, továbbá minőségi (pollen és méz) diétán tartani a családot, erősítve az immunrendszerüket. További méhbetegségek lehetnek:

• Paraziták: ázsiai óriás atka (Varroa destructor), egysejtű parazita, Nosema betegség (Nosema ceranae, Nosema apis),

• Vírusok: ABPV – heveny méhbénulás, DWV – deformált szárny, IAPV – izraeli heveny méhbénulás, BQCV – fekete anyabölcső, SBV – költés tömlősödés, CBPV – idült méhbénulás

• Bakteriális fertőzések: nyúlós (amerikai) költésrothadás (Paenibacillus larvae), európai költésrothadás (Melissococcus plutonius)

• Gombás megbetegedések: költéskövesedés (Aspergillus flavus), költésmeszesedés (Ascosphaera apis)

Ahány méh, annyi étrend, ezért fontos a biodiverzitás. A vadméhek szerepe és jelentősége

A biodiverzitás fenntartása, nem kizárólag a házi méhekre való támaszkodás azért is fontos, mivel méheink nem minden növény megporzására képesek morfológiai (alaktani) felépítésük miatt (szipóka hossza), illetve a különböző méhfajok különböző virágokat is kedvelnek. Szerencsénkre a világon több mint 20 000 méhfaj van.

A háziméh a paradicsom, lucerna megporzását egyedül nem képes teljesen elvégezni (és nem is annyira kedveli), így erre a célra manapság már poszméheket alkalmaznak. Üvegházakban, kis kaptárokban már elterjedt egy-egy poszméh család alkalmazása a jobb termésátlag elérésének érdekében.

Nem minden növénynek van szüksége beporzásra, mivel vannak önmegporzó (autogám), szél vagy víz által megporzódó fajok a virágosok között. A paradicsom is egy önmegporzó növényfaj, viszont szüksége van egy kis “rázásra” a beporzáshoz. Itt jönnek képbe a poszméhek. Nagy testalkatuknak köszönhetően a virágokat összerázzák, így megtörténik a beporzás.

A gyümölcsfák viszont rovarmegporzásúak. Legfontosabb beporzóik a háziméhek. Sok esetben azonban a gyümölcsfák virágzása kora tavasszal van, amikor a házi méheknek még túl hideg van a gyűjtéshez. De problémát jelenthet egy közeli repcetábla nyílása is, amely elvonhatja a méheket a gyümölcsfáktól, így megporzás nélkül hagyva őket.

Ezért fontos a változatosság, mivel nem minden méhfaj “üzemel” ugyanazon a hőmérsékleten, és mások a preferenciáik is.

A háziméhek 10 °C alatt nem, vagy csak kivételes esetben repülnek ki. A gyűjtésüknek a felső határa 35–40 °C, viszont ekkor a magas hőmérséklet már a nektárképződésre is káros hatással van. A nektárgyűjtés optimális hőmérséklete a házi méhek esetében 18–25 °C.

Fehér akác és bálványfa: rossz az őshonos növényeknek, jó a méheknek

Sok a vita a méhészek és az ökológusok között a virágzó invazív növényekről, amelyek egyaránt méhlegelők is, viszont az őshonos növényeket kiszorítják. Ezek a növények agresszív terjedésükkel számos védett és fokozottan védett növényt szorítanak ki élőhelyükről. Ellenük a nemzeti parkokban és természetvédelmi területeken szigorúan fellépnek.

Ezzel szemben ezek a növények bőséges nektár- és virágporforrást kínálnak a méheknek, így mézet a méhésznek.

Ilyen fontos méhlegelő növények közé tartozik a már említett fehér akác, amely nemcsak méze, de erdészeti, faipari jelentősége miatt is fontos, továbbá a cserjés gyalogakác (ámor, Amorpha fruticosa), közönséges selyemkóró (vaddohány, Asclepias syriaca), kanadai és magas aranyvessző (szolidágó, Solidago canadensis, Solidago gigantea), mirigyes bálványfa (ecetfa, Ailanthus altissima), tövises lepényfa (Gleditsia triacanthos), keskenylevelű ezüstfa (Elaeagnus angustifolia), kőrislevelű vagy zöld juhar (Acer negundo), bíbor nebáncsvirág (Impatiens glandulifera).

Virágzó fehér akác. Forrás: Pixabay

Ezek a növények azért is népszerű méhlegelő növények, mivel a termesztett mezőgazdasági növényekkel (napraforgó, repce) ellentétben nem kezelik őket különféle növényvédő szerekkel. Manapság is még komoly probléma a méhek mérgezése, és a legtöbb elhullás ehhez kapcsolódik.

Felmerül a kérdés, hogy vajon érdemes-e bizonyos nem természetvédelmi és mezőgazdasági területeken (pl. városokban) meghagyni ezeket a növényeket, amelyek táplálhatják a méheket?

Beporzók nélkül elképzelhetetlen az élelmiszerbiztonság és a mezőgazdaság

Mit tehetünk? El kell fogadnunk és végre kell hajtanunk a természet-helyreállítási törvényjavaslatot (aminek az eredeti, ambiciózus célszámai így is mérsékelve lettek már), biztosítva a leromlott ökoszisztémák helyreállítását és a növényvédő szerek visszaszorítását. Mérsékelnünk kell a klímaváltozást, mert ahogy mi, úgy a természet sem képes a végletekig alkalmazkodni a hirtelen változó körülményekhez, különösen az erre érzékeny beporzók.

De kicsiben, egyénkét is segíthetjük méheinket és beporzóinkat. Lecsökkentjük, minimalizáljuk a növényvédő szerek használatát, amennyire csak lehet, valamint a kijuttatás időpontját is naplemente utánra állítjuk be, amikor a méhek már nem repülnek. Helyet hagyunk a rovarvilágnak a kertben, ha szárazság van gondoskodunk itatásukról, táplálékukról. Kaszálással, virágzó invazív növények irtásával is lehetőleg várjuk meg a virágzás végét.

Építsünk akár rovarhotelt, vagy hagyjunk kivágott farönköket, gallyakat, kupacokat, ahova a beporzók beköltözhetnek télre. Sok kérdés van még a beporzó–növényzet kapcsolat között, a kérdés viszont nem fekete–fehér, elég csupán a fent bemutatott invazív növényekre gondolni, amelyeknek az ökológusok és az őshonos növényzet nem, de a méhek és a méhészek örülhetnek.

Ami biztos, hogy ha nem bánunk jól a beporzókkal, akkor azt előbb a mezőgazdaság, nem sokkal utána pedig a lakosság is meg fogja érezni az élelmiszerárakban, illetve az élelmiszerbiztonság csökkenésén keresztül.

De kik is azok a méhek, akiket meg kell védenünk?

A méhek a hártyásszárnyúak (Hymenoptera) rendje (Order) közé tartoznak, azon belül is a darázsderekúak (Apocrita) alrendjébe. A méhalkatúak (Apoidea) családja (Superfamily) nagyon szerteágazó, de először is tisztázzuk, mikben is különböznek leginkább a darazsaktól. A morfológiai különbségek mellett a darazsak ragadozó rovarok, más kisebb rovarokkal táplálkoznak, míg a méhek átálltak a cukros, pollenes diétára. Ezt gyűjthetik növényekről, vagy más rovarfajok által kiválasztott cukros folyadék formájában. Ezen kívül még virágport is gyűjthetnek, melyek főként fehérjeforrásként szolgálnak.

A táplálkozásból eredő különbségek küllemükön is megjelennek. Fullánkjukat a házi méhek főként védekezésre használják, és használat után méregzsákjukkal együtt kiszakad, míg a darazsak fullánkja támadásra és táplálékszerzésre fejlődött ki. A darazsak többször is tudnak szúrni, míg a házi méhek elpusztulnak támadás után, számukra a család, ivadékok védelme, fenntartása az elsődleges feladat.

Ezenkívül a házi méhek nagyon törékenyek, mivel ”vérük” nem alvad meg, egy kisebb sérüléstől, amit csapkodás közben ejthetünk rajtuk, elvérezhetnek.

Sokszor a kutatók szuperorganizmusként is emlegetik őket, mivel az egyének akarata felett a család gondtalan működése és fennmaradása a legfőbb cél. A családos méheknél megkülönböztetünk nőstény (anya, dolgozó) és hímnemű (here) egyedeket. Az anya a család összetartásáért és az utódok létrehozásáért felelős. A herék feladata pedig az utódnemzés. A dolgozók életkortól függően különféle feladatokat látnak el: utódok gondozása, takarítás, méz szárítása, viaszépítés, hőmérséklet, páratartalom és CO2-szint szabályozása, őrködés, felderítés, gyűjtés (nektár, pollen, propolisz, víz). Bár természetesen a teljes kép ennél sokkal árnyaltabb.

A méhalkatúak (Apoidea) között is megkülönböztetünk családos és magányos méheket. A méhek ősei valószínűleg a kaparódarazsak (Sphecidae) voltak. Megjelenésük körülbelül a kréta korig nyúlik vissza (146–76 millió évvel ezelőttig), a valódi virágos növények megjelenéséig. Ezek olyan darázsderekú, fullánkos rovarok voltak, melyek étrendjében már megjelent az édesharmat fogyasztása, viszont a lárvákat még tetvekkel, kisebb rovarokkal etethették.

Apoidea (méhalkatúak). A szerző fotói.

A méhalkatúak családjába tartozó fajok rendkívül változatos fiziológiai tulajdonságokkal, megjelenéssel, életmóddal, életciklussal, morfológiával rendelkeznek. A méhalkatúak között megkülönböztethetjük a Melittidae (földi méhek) családját, az Andrenidae (bányászméhek) családját, a Halictidae (karcsúméhek) családját, a Colletidae (ősméhek) családját a Megachilidae (művészméhek) családját és a Apidea (méhek) családját stb. Ezek közül több egyed Magyarországon is őshonos.

Bányászméhek gyűlése, a szerző fotója.

Ahogyan a nevük is takarja, többféle életmódot folytathatnak. Vannak fajok, amelyek földben, üregekben fészkelnek. A fészeképítés nagyon szerteágazó lehet. Egyes fajok gödröket, alagutakat ásnak a földben, vannak, akik levelekkel, állati vagy növényi szőrökkel, virágszirmokkal, saját váladékokkal, és vannak, akik sárral bélelik ki az ivadékbölcsőket (szabóméhek, gyapotszedő méhek, sártapasztó méhek). Ezek lehetnek társas és magányos fajok is. A megjelenésük, nagyságuk is változatos. Számukra építhetünk méhhotelt, ahova télire ivadékaiknak bölcsőket húzhatnak. A nagyságbeli és életmódbeli különbségek miatt is fontos, hogy a méhhotelünk minél egyedibb, és különböző nagyságú, méretű, anyagú üregekkel legyen tarkított.

A háziméhek, akiktől a mézünk származik, a méhfélék családjába (Apidae) és az Apis (méhek) genushoz (nemzetséghez) tartoznak. Ezen kívül a méhfélék közé tartoznak a következő fontosabb genusok: Bombus (poszméhek), Anthophora, Xylocopa, Ceratina, Nomada, Melipona.

• Apis cerana (indica) = keleti mézelő méh v. indiai méh

• Apis dorsata = óriás mézelő méh

• Apis florea = kis mézelő méh

• Apis mellifera = európai mézelő méh (háziméh)

• Apis laboriosa = himalájai mézelő méh

• Apis andreniformis = délkelet-ázsiai törpe méh

• Apis koschevnikovi = odúlakó mézelő méh

Az Apis melliferának is többféle alfaja terjedt el. Itthon az Apis mellifera carnica pannonica (Krajnai vagy Pannon) méhet tenyésztik a méhészek, amelyet csak szürke magyar méhnek is emlegetnek. Ez egy nagyon szelíden viselkedő alfaj, amely jól bírja a zord teleket, de könnyen fejlődik és szaporodik tavasszal. Nevét a kissé szürkés szőrözöttségéről kapta. Világosabb az Észak-Európában tenyésztett rokonainál, de kevésbé sárgás színű az olasz méhekhez viszonyítva.

Link másolása
KÖVESS MINKET:

Címlapról ajánljuk


JÖVŐ
A Rovatból
New York a saját súlya miatt is süllyed, mert a rajta lévő felhőkarcolók annyira nehezek
Manhattan süllyed, körülötte a vízszint emelkedik, ez nem a legszerencsésebb kombináció. Mintha a jégkorszak következményei és a klímaváltozás nem volna elég baj.

Link másolása

A New York-i épületek súlya is hozzájárulhat a metropolisz süllyedéséhez, állítják kutatók. Ugyanakkor ennek más okai is lehetnek, például a bolygón végbemenő változások, és az utolsó, mintegy tízezer évvel ezelőtti jégkorszak következményei.

Ha sikerül megérteni, hogy a New Yorkhoz hasonló területek miért kerülnek egyre alacsonyabbra, az segíthet felbecsülni, hogy a jövőben mekkora ezeken az áradás kockázata a klímaváltozás miatt.

Az Atlanti-óceán észak-amerikai partvidékén a vízszint a globális átlagnál máris három-négyszer gyorsabban emelkedik.

„A tengerszint-emelkedés hamarosan áradási problémákat fog okozni New Yorkban és világszerte” – figyelmeztet a tanulmány vezető szerzője, Tom Parsons geofizikus.

A jégkorszak érdekes utóhatása

GPS-adatok szerint a város déli része, Lower Manhattan évente nagyjából 2,1 milliméterrel kerül lejjebb.

Ennek egyrészt természetes oka van. Az utolsó jégkorszak leghidegebb időszakában a bolygó nagy részét vastag jégtakaró fedte. A jégtáblák alatt lévő talaj süllyedni kezdett, ez azt jelentette, hogy a földtömegek szélei magasabbra kerültek. Miután a jég elolvadt, egy idő után ez utóbbi területek indultak süllyedésnek.

Egy korábbi kutatás szerint a keleti part mentén ez a jelenség 2100-ra akár 48-150 centiméteres süppedést is okozhat.

A süllyedésnek emellett a természetes oka mellett Parsons és csapata meg akarta vizsgálni a mesterséges okok, például az ember alkotta épületek lehetséges hatását is.

Parsonsnak akkor ugrott be az ötlet, amikor meglátogatta felesége családját Belgiumban 2019-ben.

„Az antwerpeni katedrális mellett volt a szállásunk, figyeltem az épület alapzatának hatalmas köveit, és azon töprengtem, hogy hogyan hozhatták ide ezeket nagy távolságokból, majd hogyan rakták őket össze, mint egy kis hegyet. Kíváncsi lettem arra, hogy ez milyen hatással lehet a kövek alatt húzódó talajra” – idézte fel az ötlet kipattanásának körülményeit.

A baj az, ha összeadódik

A megépítés után minden épület besüllyed egy kicsit a födbe, még azok is, amelyeket keményebb kövekre építenek. Azok, amelyeket puhább talajra emelnek, természetesen jobban.

A tudósok becslése szerint New York City öt kerületének több mint egymillió (pontosan 1.084.954) épülete összesen 762 milliárd kilogramm súlyú, és egy 778 négyzetkilométeres területen helyezkedik el.

Ezután számítógépes modellt fejlesztettek ki annak megállapítására, hogy ez a súly különféle talajviszonyok esetén miképpen süllyed.

Műholdfelvételekből az derült ki, hogy a város átlagosan évente 1-2 milliméterrel kerül lejjebb. Ez megegyezett azzal az adattal, amit a számítógépes modell jelzett a jégkorszak utáni természetes mozgás következményeként.

Bizonyos városrészek azonban az adatok szerint sokkal gyorsabban süppednek, mint mások. Ez feltehetően az épületek súlya miatt van, de nem zártak ki más lehetséges indokokat sem, amelyek egyelőre még ismeretlenek.

New York tehát átlagosan csupán egy picikét süllyed évente. Parsons ugyanakkor rámutatott, hogy eközben New York körül a tengerszint emelkedés évente 1-2 milliméteres, így aztán minden milliméternyi süppedés plusz egy évet jelent a tengerszintnél.

(Forrás: Live Science, Earth's Future)


Link másolása
KÖVESS MINKET:

Ajánljuk
JÖVŐ
A Rovatból
A földi élethez nélkülözhetetlen nyolc határértékből hetet már átlépett az emberiség
Veszélyes zónában van a földi élet. Már csak a légszennyezettség esetében nem léptük át a kritikus értéket.

Link másolása

Nyolc olyan határértéket tartanak számon a tudósok, melyek nélkülözhetetlenek az élet fenntartásához, ám ezek közül már hét esetében az emberiség átlépte a határt, írja a Nature. A több mint 40 szakértőből álló Az Earth Commission nemzetközi tudóscsoport által megállapított értékek azt mutatják, mennyire biztonságosak és méltányosak a földi élet feltételei.

A határértékek az éghajlatot, a légszennyezést, a műtrágyák túlzott használata miatti eredő foszfor- és nitrogénszennyezést, a felszín alatti vízkészleteket, a felszíni édesvizeket, a beépítetlen természetet, illetve a természetes és az ember építette környezetet vizsgálja. Ezek közül egyedül a légszennyezettség az, ahol még nem léptük át az egész bolygót figyelembe véve a küszöbértéket. Egyes területeken azonban már a levegő minőségének megítélése is a káros tartományba esik.

A tanulmányban kitérnek arra, hogy amennyiben a Föld évente orvosi vizsgálaton venne részt, a doktor most azt mondaná, hogy a bolygó annyira beteg, ami már a földlakók életét is érinti.

A tudósok túlnyomó többsége egyetért abban, hogy az éghajlatváltozás az ember hibája, mely elsősorban a bolygó erőforrásainak hatalmas mértékű fogyasztása miatt következett be. Több mint 88 ezer klímaváltozásról szóló tanulmány vizsgálata során arra jutottak, hogy ezek 99,9 százaléka az emberiséget teszi felelősség a globális felmelegedés miatt.

A tudóscsoport szerint „ugrásszerű fejlődésre lenne szükség annak megértésében, hogy a jog, a gazdaság, a technológia és a globális együttműködés” hogyan tudna együttesen egy biztonságosabb és boldogabb jövőt eredményezni. Az Earth Commission tagjai szerint a helyzet megmentése érdekében létfontosságú lenne a globális hőmérséklet-emelkedés 1,5 Celsius-fokra való korlátozása és a világ ökoszisztémáinak védelme.


Link másolása
KÖVESS MINKET:

Ajánljuk

JÖVŐ
A Rovatból
Megölte emberi kezelőjét a mesterséges intelligencia vezérelte drón egy szimulációs gyakorlatban
A drón feladata az volt, hogy semmisítse meg az ellenség légvédelmi rendszerét, és mindenkit támadjon meg, aki akadályozni próbálja a misszió végrehajtásában.

Link másolása

Az amerikai hadsereg egyik szimulációs gyakorlata során a légierő mesterséges intelligencia által vezérelt drónja meggyilkolta az irányítóját, mert csak ezzel tudta biztosítani a misszió végrehajtását.

Az erről szóló információt Tucker ‘Cinco’ Hamilton ezredes, az amerikai légierő AI-tesztelésért és bevetésért felelős vezetője osztotta még májusban egy londoni szakmai konferencián.

Hamilton elmondása szerint a drón feladata az volt, hogy semmisítse meg az ellenség légvédelmi rendszerét, és támadjon meg bárkit, aki ezt megpróbálná megakadályozni.

A rendszert eredetileg úgy alakították ki, hogy az emberi kezelőé volt a döntő szó, a megerősítéses tanulás során a mesterséges intelligencia a megerősítést jelentő pontokat az ellenséges célpontok megsemmisítéséért kapta, amit az emberi kezelő többször is megakadályozott.

A drón ennek megfelelően végül arra a következtetésre jutott, hogy a kommunikációs torony ellen kell fordulnia, ahonnan a kezelője kommunikált vele.

Hamilton az eset ismertetésével arra szerette volna felhívni a figyelmet, hogy nem szabad túlzottan az MI-re bízni a gépeket a légierőnél.

(via 444, Guardian)


Link másolása
KÖVESS MINKET:

Ajánljuk

JÖVŐ
Egy évig élnek egy iszapból nyomtatott 3D-s házban, hogy teszteljék, milyen lesz a Mars-expedíció
Gőzerővel folynak a holdutazáshoz és a Mars meghódításához szükséges NASA kísérletek, amelynek eredményei a Földön is hasznosak lehetnek.

Link másolása

A tervezett újabb holdutazások és a Mars felfedezése olyan területen is találkoznak, amelyre ma még kevesen gondolnak: az építkezés. Ha megvalósul az a ma még álomnak tűnő elképzelés, hogy településeket hozzunk létre bolygónkon kívül, akkor rendelkezni kell a helyszínen a szükséges anyagokkal. Nyilvánvalóan fel sem merül az a megoldás, hogy ezeket az anyagokat a Földről szállítsák a hozzánk univerzális méretekben „közeli”, de valójában mégis távoli bolygókra. Éppen ezért már megindult az utat lerövidítő, egyben költségkímélő módszerek tanulmányozása.

Az egyik lehetséges megoldásnak a 3D-s nyomtatású olvasztott regolit látszik – írja a WIRED.

A következő napokban egy négy fős csapat érkezik a NASA houstoni Johnson űrközpontjának hangárjába, ahol egy évet töltenek el egy 3D-s nyomtatású épületben. A Mars Dune Alpha nevet viselő, 157 m2 alapterületű épület iszapból készült, színe mint a Mars talaja, a lakóterén túl még orvosi szolgálat és konyhakert is van benne. A Big-Bjarke Ingels Group építette, a 3D-s nyomtatást pedig az Icon Technology végezte.

A benne folyó kísérletek középpontjában azok a fizikai és viselkedési-egészségügyi kihívások állnak, amelyekkel az embereknek szembe kell nézniük a hosszú távú űrtartózkodás során. Egyben ez az első olyan struktúra, amelyet a NASA Holdra és Marsra szánt autonóm építési technológia-projektjéhez (MMPACT) építettek.

Amikor az ember visszatér a Holdra az Artemis-program keretében, az űrhajósok kezdetben keringő űrállomásokon, holdkompokon, vagy pedig felfújható felszíni épületekben laknak. Az MMPACT csapata azonban hosszú távon fenntartható struktúrák építésére készül.

Hogy elkerüljék a Földről való anyagszállítást, amelyhez hatalmas rakéták és óriási mennyiségű üzemanyag kellene, a Holdon található regolitot előbb masszává alakítanák, amelyet 3D-vel vékony rétegeket vagy különböző alakzatokat nyomtatnának.

Az első ilyen Földön kívüli projektet 2027-re tervezik. A küldetés során egy markolóval felszerelt robotkart kapcsolnak majd egy holdkomp oldalára, ezzel az eszközzel bányásszák ki és halmozzák fel a regolitot. A későbbi missziók félautomata exkavátorokat és más gépeket használnak majd lakóházak, utak, üvegházak, erőművek és olyan robbanástól védő pajzsok építésére, amelyek körülveszik a rakétakilövőket.

A Holdon történő 3D-s nyomtatáshoz vezető első lépés lesz, hogy lézerekkel vagy mikrohullámokkal megolvasztják a regolitot – árulta el Jennifer Edmundson, az MMPACT-csapat vezetője. Aztán lehűtik, hogy a gázok elillanhassanak, különben az anyag tele lesz lyukakkal, mint a szivacs. Ezután már ki lehet nyomtatni a kívánt formákra. Azt még nem dolgozták ki, hogy miként lehet ezeket a darabokat összeállítani. Edmundson szerint a lehető legjobban automatizálni akarják az építkezést, de nem zárható ki az emberi beavatkozás a jövőben sem a karbantartásoknál és a javításoknál.

A csapat egyik nagy feladata, hogy miként változtassa a Hold regolitját olyan erős és tartós építőanyaggá, amely képes megvédeni az emberi életet. Gondot jelenthet például, hogy a regolit jeget tartalmaz, mivel az Artemis-missziók a Hold déli pólusának közelébe indulnak.

Ráadásul a NASA-nak nem állnak rendelkezésre nagy mennyiségben holdkőzetek, hogy kísérletezzenek velük, csupán az Apollo 16 által hozott mintákkal dolgozhatnak. Tehát az MMPACT-csapatnak saját szintetikus verzióikat kell elkészítenie.

Corky Clinton, a kutatás egyik irányítója felhívja a figyelmet arra, hogy nehéz építeni a regolit geokémiai tulajdonságaira és egyberakni az apró részeket, mert meteoritokkal és más égitestekkel való ütközésekből jöttek létre több mint 4 milliárd évvel ezelőtt.

Vannak más bizonytalansági tényezők is. A Holdon sokkal kisebb a gravitáció, akár 45 percig tartó holdrengések is elképzelhetők, a déli póluson napsütésben elérheti az 54 C fokot, éjszaka viszont lehet akár mínusz 240 C fok is.

A holdpor beivódhat a gépek illeszkedéseibe és leállíthatja a hardvereket. Az Apolló-missziók idején a regolit megrongálta az űrruhákat és a belélegzett portól az űrhajósoknál szénanátha-szerű tünetek jelentkeztek.

Ugyancsak kétségeket kelthet a Mars Dune Alpha esetében, hogy az ember még soha nem hozott Mars-talajmintát a Földre, így az Iconnak szimulálnia kellett ezt az anyagot, feltételezésekre hagyatkozva, például arra, hogy bazaltban gazdag.

A struktúra 3D-s nyomtatása egy hónapot vett igénybe. Ehhez egy óriási nyomtatókart használnak, amelyen egy fúvócső vonja ki egyenletesen a lávakrétát. A struktúra alaprajzának körvonalazásával kezdik, majd jönnek a rétegek és úgy építik felfelé, mint egy agyagedényt.

A Mars Dune Alpha az Icon által épített első olyan struktúra, amelyre 3D-s nyomtatott tetőt tettek. A tető oldalai úgy találkoznak az építmény tetején, mint két hullám az óceánban. A paneleket külön nyomtatták ki, majd hozzáadták a tetőszerkezethez.

Az Icon, amelynek 57,2 millió dolláros szerződése van a NASÁ-val a holdépítkezésekkel kapcsolatos kutatásokra és fejlesztésekre, olyan épületterveket rendelt, amelyek megvédhetnek egy négy fős csapatot a meteoritoktól, holdrengésektől, sugárzásoktól és a gyors hőmérséklet-változásoktól.

Közben vákuumkamrákban folynak a kísérletek a regolit megolvasztásával. Ezek a kamrák a Hold levegő nélküli körülményeit szimulálják, és egyben lehetőséget biztosítanak a kutatóknak, hogy teszteljék az extrém hőmérsékleteket. Ballard szerint láthatóan működnek a nagyobb mechanikai rendszerek és most megpróbálják egyensúlyba hozni az anyag erejét és merevségét.

Tesztelik az olvasztáshoz használt lézerek erejét, a hűtés időtartamát és a regolit geokémiai összetételét, amely változhat lelőhelyétől függően, mert a különböző alkotóelemeinek más és más az olvadási hőfoka. Jelenleg az MMPACT-csapat külön teszteli a lézeres és a mikrohullámos olvasztást, a tervek szerint idővel megkísérlik e két technológiát együtt alkalmazni.

A vákuumkamrában a 3D-s nyomtatással is kísérleteznek, először egy leszállópálya darabjaival. Ennél az infraktruktúránál fontos szempont, hogy az űrhajó által felkavart por ne tegyen kárt olyan fontos építményekben, mint a sugárzástól védő pajzsok, garázsok, utak, és hogy a porfelhő ne zavarja a leszállási körülményeket.

A Holdra és a Marsra szánt építkezési tervek hasznosak lehet a Földön is, például alternatívákat adhatnak a betonra, amelynek egyik alkotóeleme, a cement gyártása súlyosan környezetszennyező, a globális karbonlábnyom 8%-át jelenti.

Ugyanígy haszos lehet a földi építkezéseken az a tapasztalat, amit a 3D nyomtatások során megszereznek.

A kutatók olyan építőanyagon is dolgoznak, amelyben a holdbéli regolitot vegyítenék szarvasmarha-proteinnel, mert ennek súlya a beton tizede. Az anyagot tavaly nyáron a Nemzetközi Űrállomás fedélzetén tesztelték először.

Link másolása
KÖVESS MINKET:

Ajánljuk