JÖVŐ
A Rovatból

Zábori Balázs: Ha az emberiség új űrállomása a Hold körül lesz, akkor egy magyar űrutazás is belefér oda

A magyar űrhajósprogram projektvezetőjét az Artemis I küldetés kapcsán a Hold meghódításának pontos tervéről és a Mars-expedíció esélyeiről is kérdeztük nagyinterjúnkban.

Link másolása

A november 16-án elindult Orion űrhajó kedden 130 kilométerre megközelítette a Holdat. De ez csak a kezdet. Űrállomást terveznek a Holdra, Zábori Balázs fizikus és űrkutató mérnök pedig azt mondta a Magyar Tudományos Akadémián, hogy 2036-ban akár magyar űrhajós is a Hold felszínére léphet. Mivel ő felel a következő magyar űrhajóst kiválasztó és kiképző Hunor programért, nála jobban kevesen tudhatják, ténylegesen mekkora is ennek az esélye. Többek közt erről kérdeztük.

– Valóban van rá esély, hogy magyar űrhajós léphet a Holdra?

– Az Európai Űrügynökségnek van egy most is futó űrhajós programja, ebbe Magyarország is állíthat jelölteket. Körülbelül évtizedenként egyszer az űrügynökség indít majd egy új űrhajós osztályt. Ha nem a mostaniba, akkor a 2030-asba bekerülhet magyar. Az Európai Űrügynökség tervei szerint 2030-ig egy európai minimum a Holdra lép, de ez akár már a 2020-as évek végén megtörténhet. Annak a valószínűsége, hogy ő pont magyar legyen, matematikailag rendkívül alacsony, de a 2030–as években már jóval több európai űrhajós érheti el a Holdat az Európai Űrügynökség berkein belül, tehát egyre nő az esélye annak, hogy lesz köztük magyar.

Emellett van egy magyar űrhajós program, a Hunor Program, aminek szintén bármilyen folytatása lehet. A Hunor programot persze egy adott céllal hoztuk létre, konkrétan egy utazás a cél a Nemzetközi Űrállomásra, azonban nincs kizárva, hogy a nemzeti űrrepülési program folytatódik, akár évtizedeken keresztül. Ha a 2030–as években az emberiség új űrállomása már a Hold körül lesz, akkor simán lehet, hogy egy magyar űrutazás is belefér oda. Tehát így nézve annak, hogy eljut-e egy magyar a 2030-as években a Holdra, sokkal magasabb a valószínűsége, mint valaha. Ráadásul egyre több a lehetséges út. Tehát nem csak egy aprócska kis ablak van, hanem sok–sok lehetőség van előttünk.

– Van különbség a Hunor programban kiképzett űrhajós és az Európai Űrügynökség keretei közt kiképzett, akár magyar űrhajós „szakképesítése” között?

– Pont ugyanolyan űrhajóst képzünk, mint az ESA. Akit a Hunor Programban kiképzünk, az ESA jóváhagyást is kap.

– Tehát nem csak egy tudományos szakembert küldünk fel a Nemzetközi Űrállomásra?

– Nyilvánvalóan többféle űrhajós van. Van projektasztronauta, van karrierasztronauta és vannak azok a magánemberek, akik csak úgy felmennek, űrturistaként. Ahol nagy különbség van, az az űrturista és a valós tudományos kutatást végző űrhajós. Az űrturista az űrturista marad. A tudományos kutatás része az űrhajós munkájának, a kiképzése nagyon összetett folyamat. Ennek folyamán dől el, hogy pontosan mit végezhet el egy állomáson. Mindegy, hogy ez a Nemzetközi Űrállomás, vagyis az ISS, a majdan Hold körül keringő Gateway, vagy a Hold felszíne. Attól függ, hogy a kiképzésen milyen komponenseket, modulokat tanult.

A magyar űrhajóst fel fogjuk arra készíteni, hogy az ISS fedélzetén az amerikai, az európai modulokban tudományos tevékenységet végezzen, vagyis pontosan olyan jogosultságokkal rendelkezik majd, mint egy ESA-űrhajós.

Nyilván olyan speciális kiképzést nem kap, ami például ahhoz kell, hogy az űrállomáson kívüli tevékenységet hajtson végre, mert erre nem lesz szüksége.

ESA-űrhajóskiképző központ, Köln

Tehát űrsétára nem lesz kiképezve, továbbá nem valószínű, hogy kiképezzük a japán modulban való tevékenységre. Nem fogjuk kiképezni valószínűleg arra sem, hogy a külső robotkart irányítsa, bár ez még akár változhat is. Ezek egyedi képzések, és ugye az ESA-űrhajósok között is változik, hogy ki milyen képzéssel rendelkezik.

– Azok a magyar űrhajósok, akik közvetlenül az Európai Űrügynökséghez jelentkeztek, illetve azok, akik a Hunor programba, más helyszínen kapják meg a kiképzést?

– Arra törekszünk, hogy Magyarországra hozzuk a kiképzés legtöbb részét, és ezt a képzést akkreditáltassuk utána az Európai Űrügynökséggel. Erre már van is megállapodás. Ez egy nagyon fontos dolog,

mert ezzel tudást teremtünk itthon, tehát az országban űrhajós-kiképzési képességet teremtünk.

Csak azok a képzések zajlanak külföldön, az Európai Űrügynökségnél, a NASA-nál, az Axiom Space-nál, amelyek olyan specifikus tudást, esetleg berendezést igényelnek, ami Magyarországon nem elérhető.

– Nézzük akkor a holdprogramot, az Artemist. Ezelőtt ötven évvel volt az Apollo-program, és végre elindult az Artemis program, nem túl könnyen. Miben más ez a mostani holdprogram, mint az Apollo volt?

– Akkor a programnak az volt az egyetlen célja, hogy eljussunk a Holdra. Az Artemis programnak az a célja, hogy hosszú távú önfenntartó ökoszisztémát hozzunk létre a Holdon, és ezzel felkészüljünk egy emberes Mars-utazásra. Ezért aztán teljesen más az a technológiai háttér, az egész program. Az Apollo-program az Apollo-17 repülésével ért véget, ami az Apollo–program csúcsa volt olyan értelemben, hogy 22 órát töltöttek a felszínen az űrhajósok.

– Ennek most lesz decemberben az ötvenedik évfordulója...

– Így van, pontosan. Ehhez képest

az Artemis-program azt célozza meg, hogy a 2030-as évek végére 30 vagy akár 45 napot is a Hold felszínén töltsenek űrhajósok, és nem egy vagy kettő, hanem hat vagy akár tíz űrhajós is.

Ehhez pedig sokkal összetettebb ökoszisztémára van szükség, nemcsak egy leszállóegységre, hanem egy űrállomásra a Hold körül, ez lesz a Gateway, megfelelő űrhajókra, és olyan eszközökre, amik képesek költséghatékonyan és nagy megbízhatósággal utánpótlást szállítani folyamatosan a Holdra. A Holdon is kell ökoszisztéma: lakómodulok, energiamodul áramtermelésre, élelmiszertermelő modulok, létfenntartó modul, kommunikációs eszközök, kommunikációs átjátszóállomás, és persze műholdak. Tehát tulajdonképpen egy olyan rendszert kell felépítenünk, ami képes fenntartani egy holdbázist, és azokat a technológiákat megteremti, melyeket utána arra fogunk használni, hogy eljusson az első ember a Marsra.

A Mars-expedícióban ugyanez lesz a feladat, azzal a különbséggel, hogy az annyira messze van, hogy oda nem fogunk tudni folyamatosan utánpótlást szállítani, ott bizony az önfenntartáson lesz a hangsúly.

– Tehát az önfenntartást és ezeket a képességeket próbálja ki elsősorban a mostani program, miközben azért gondolom, hogy a Holdnak is szóba jöhet egyfajta gazdasági hasznosítása.

– Igen, ezt mindig kérdezik, de az Artemis program elsődlegesen az önfenntartó űrutazás technológiájának fejlesztésére fókuszál, illetve tudományos kutatásokra, hogy kiderüljön, a Holdon mit is lehet találni. És majd aztán ezeket az eredményeket használhatja fel a piaci szektor. Először meg kell ismernünk, milyen erőforrásokra lehet egyáltalán számítani, és azok hol helyezkednek el. Tehát például van-e értelme bányászni, mert arra a kérdésre, hogy mi van a Hold felszíne alatt és milyen mélyen, még mindig kevés a használható válasz. Majd amikor már ezt tudjuk, akkor onnantól kezdve a cégek eldönthetik, hogy megéri-e nekik.

– Amikor az Apollo–programmal kapcsolatban olvasok vagy nézek anyagokat, egyre inkább az a benyomásom, hogy ez egy mérhetetlen vakmerő vállalkozás volt azzal a technológiai fejlettséggel, ami a '60–as években rendelkezésre állt. Mintha igazából most értünk volna el technológiailag oda, hogy valóban eljussunk a Holdra.

– Ez nagyjából így is van. Az Apollo-program idején nagyjából egy a hathoz volt az esélye annak, hogy katasztrófa történik. Ezt úgy lehet lefordítani, hogy a Holdra küldött hat űrhajósból egy sosem tért volna vissza. Valóban a technológia határait feszegették, de akkoriban komoly nemzetközi űrverseny volt, ott nem számított semmi, csak a cél. Most viszont már bőven rendelkezésünkre áll az a technológia, ami ahhoz kell, hogy a Holdon ökoszisztémát létesítsünk. Teljesen más világot élünk, láthattuk ez abban is, hogy az Artemis I hogyan indult el. Össze sem lehet hasonlítani az Apollo-programmal, hiszen akkor sokkal kockázatosabb és rizikósabb felbocsátások esetén is útnak indultak az űrhajók, mert azt a tempót diktálta az űrverseny.

Most az Artemis felbocsátást a legkisebb hiba miatt is törölték. Tolták, tolták és tolták, mert annyira fontos a megbízhatóság, a biztonság.

Most már sokkal inkább a biztonságos űrutazás felé mozdult el a világ.

– Ha a biztonság az első, mik a reális céldátumok? Ugye arra már biztosan nincs esély, hogy 2024-ben az emberes misszió is elinduljon?

– Jelenleg a NASA terveiben a 2025-ös dátum szerepel. Ez nagyjából reális is, mert eredendően 2024 végét célozták meg. Nagyjából fél-egy év csúszásban van az Artemis program, tehát a 2025 közepe-vége szerintem vállalható cél. Azt ne felejtsük el, hogy az első emberes repülése az Orionnak egy leszállás nélküli próbarepülés lesz. Most úton van az Orion ember nélkül, a következő küldetés jó eséllyel embereket is visz magával, és ugyan nem szállnak le a Holdra, de megkerülik azt. És ezzel párhuzamosan várhatóan 2024-25-ben pedig a Gateway állomás első két modulja is Hold körüli pályára áll.

– Az első emberes landolásnál még nem használják a Gateway-t?

– Az első emberes leszállás az arra szolgál, hogy a technológiát teszteljék. A Gateway-re azért van szükség, hogy a hosszú távú leszállásokat biztosítsa.

Tehát az első emberes leszállás az csak egy fél nap lesz, kicsit az Apollo-program ismétlése. Arra szolgál, hogy lássák, a technológia működik-e.

És utána a Gateway-en keresztül történő űrutazás már azt célozza, hogy kiterjesszük a Holdon töltött időnket. Tehát legyen egy back office. Ha a Gateway-re megyek, onnan le tudok szállni egy olyan űrhajóval, aminek tele van a raktere. Ha a Földről megyek, akkor mire odaérek, a rakterem szinte üres, vagyis az ellátmányom egy napig elég. Az Apollo–program is ezért tarthatott maximum 22 órát a felszínen, mert még a hazaútra is elég kellett legyen minden. Viszont, ha a Gateway-ről szállok le, akkor ez a probléma megoldódik.

– Automata teherszállító űrhajók is közlekednek majd a Föld és a Gateway között?

– Igen, és lesznek olyan teherűrhajók, amik közvetlenül elmennek a Holdra, mert megéri. De azok az űrhajók, amik embert visznek, mind megállnak a Gateway-en.

Tehát ott űrhajót váltanak. Átülnek egy olyanba, ami csak a Holdra szállást végzi.

– Ilyenkor eszembe jut az Arthur C. Clark 2001 Űrodüsszeiája, amiből Kubrick filmje is készült. Ott egy nagyon hasonló koncepció van, mindjárt az elején. Egy nagy űrállomáson szállnak át a Hold irányába, pedig hát ez a '60-as években készült.

– Igen, ez a legoptimálisabb mérnöki megoldás. Bár a NASA leszerződött a SpaceX-szel a Starshipre, a csillaghajóra is. Ennek akkora lesz a kapacitása, hogy közvetlenül a Földről hat embert elvisz a Holdra, 30 napig bázisként szolgál, majd haza is hozza őket. Felmerül a kérdés, hogy akkor szükség van–e a Gateway-re? A NASA nyilván azért csinálja ezt, mert most még párhuzamos lehetőségeket futtat, hiszen mi van, ha a Gateway megcsúszik, mi van, ha a másik projekt csúszik meg? Ezen felül a Gatewaynek van egy plusz funkciója, amit nagyon fontos. Ez az objektum a Mars űrhajó előképe.

A Gateway nemcsak egy űrállomás. Ha teljesen elkészül, egy nagyon erős hajtómű-modullal lesz felszerelve, simán képes lesz arra, hogy elhagyja a Hold körüli pályát, és tegyen egy kis kiruccanást a belső naprendszerbe.
A Gateway a NASA fantáziarajzán

Vagy nagyon elliptikus pályára álljon a Hold körül, és időnként jó alaposan eltávolodjon, hogy olyan pozícióba kerüljön, ahonnan megfigyeléseket végezhet, például a kozmikus sugárzással kapcsolatosan. Esetleg csillagászati, vagy egyéb biológiai kísérleteket végezhet a mélyűrben. A NASA Mars utazása is valószínűleg így fog kinézni, hogy a Hold körül megépítünk egy űrhajót, és az az űrhajó a Holdtól szépen elmegy a Marsig. Ez a legvalószínűbb forgatókönyvek egyike.

– A Nemzetközi Űrállomás folyamatosan lakott, már huszonkét éve. A Gateway fedélzetén lesznek állandó űrhajósok?

– Nem, a Gateway csak akkor lesz lakott, amikor holdutazás van folyamatban, és ott töltenek valamennyi időt az űrhajósok leszállás előtt, leszállás után, esetleg utána még maradnak egy hónapot konkrét kísérletek elvégzésére. Azért csináljuk így, mert a Nemzetközi Űrállomáson is igen komoly mennyiségű ellátmánynak kellene folyamatosan rendelkezésre állnia ahhoz, hogy állandóan ott lehessenek emberek.

Ezt a mennyiséget eljuttatni Hold körüli pályára még költségesebb, még nehezebb, mint a Nemzetközi Űrállomás esetében.

Itt most az a cél, hogy a Hold felszínén minél több időt töltsünk. A Gateway ehhez egy eszköz.

– Mi az, ami csúszásban van? Egy időben például a Holdon használatos űrruháról hallottuk, hogy voltak komoly csúszások. Szóval hogy állunk a hardverrel?

– Ez nagyon széles skálán mozgó történet. Erről az akadémiai előadásomban is csak érintőlegesen tudtam beszélni. Itt hardver a rakétától az űrhajón át a felszíni tevékenység során használandó járművekig, energiaellátó berendezéseken át, a kommunikációs műholdakon, a Gateway-modulokon keresztül az űrruhákig terjed. Itt most aztán tényleg rengeteg dologról beszélünk, és minden egy kicsit másképpen áll. Tehát ezt a kérdést megválaszolni önmagában egy kétórás beszélgetés lenne szerintem.

Ami ebből talán lényeges, hogy a fő hardverelemek azok nagyon jól állnak. Az SLS készen áll, sőt el is indult, az Orion készen áll, sőt el is indult.

A Gateway gyártás alatt van a Northrop Grumman műhelyben, tehát az, hogy elkészül, nem kérdés. Ezekkel a fő elemekkel már nem állunk rosszul, és mindeközben pedig a Starship is készül. Csúszások persze mindig adódhatnak, de ezek a kulcselemek, és a kulcselemek mind gyártás alatt vannak, vagy a fejlesztés végfázisában járnak.

– Tehát az Artemis II mindenképpen az Orionnal történik?

– Az Orionnal, igen, tehát az SLS-rendszerrel.

– És nem lesz benne Starship?

– A NASA-nak több koncepcióra van szerződése. Azt akarja elérni, hogy itt is verseny alakuljon ki. Hogy ne csak a SpaceX tegyen le az asztalra egy űrhajót, hanem más cégek is, Boeing, Lockheed Martin, stb. Az Orion űrhajó a Holdra szállásra ebben a formában még nem alkalmas. Arra alkalmas, hogy a Gateway-hez dokkoljon, vagy alkalmassá tehető.

Az Artemis II szerintem a jövő évben elindulhat, ha minden jól megy, én nem hiszem, hogy ezzel probléma lesz.

Viszont az Artemis III az már 2024–re fog csúszni legjobb esetben is, ha nem 2025–re. Na most 2025 azért még nincs közel, tehát addig még nagyon sok minden változhat. Úgyhogy ezt most megmondani, hogy mivel fognak leszállni a Holdra szerintem, senki nem tudja, még a NASA–nál sem.

– Az Artems II egy elég kicsi kapszula. Hogy négy ember több, mint egy hétig ott ücsörögjön benne, az azért emberpróbáló dolog lesz. Tehát az űrhajózás hőskorát fogja idézni az út ilyen szempontból.

– Ez így van. Szerintem a NASA az Artemis III-IV–re még nem hiszem, hogy a Starshippel számol. Nekem az a véleményem, hogy csinálnak erre fejlesztést, közösen a Lockheed Martinnal. Lesz egy egyszerűsített megoldás is arra, hogy hogy lehet leszállni a Holdra. A Starship akkor jön elő, amikor az Artemis programmal odaérünk, ami már szerintem az 2025-26 körül lesz, amikor tényleg

hosszú távú holdfelszíni tevékenységet akarunk. Akkor már egy olyan egységgel kell landolni, aminek akkora kapacitása van, hogy akár hat űrhajóst is a felszínre juttat, és 15–30 napra elegendő ellátmányt is visz magával.

Na, ehhez kell a Starship, mert hatalmas a kapacitása.

Starship űrhajó a Hold felszínén

És ez lesz a nagy ugrásbeli különbség.

– Tudunk-e már kiválasztott személyzetről, akik az első missziókon részt vesznek?

– A NASA annyit már megtett, hogy ő már kiválasztott egy űrhajós gárdát, akik az űrhajósok lesznek.

– De még konkrétan nincsenek nevek?

– Konkrétak még nincsenek. Sőt, az űrhajósok az Artemis-specifikus képzésüket mostanság kezdik csak el. Nyilván minden űrhajóst fel kell készíteni az Orionra, tehát egyedileg az Orion űrhajóra fogják már őket kiképezni.

Link másolása
KÖVESS MINKET:

Címlapról ajánljuk


JÖVŐ
A Rovatból
New York a saját súlya miatt is süllyed, mert a rajta lévő felhőkarcolók annyira nehezek
Manhattan süllyed, körülötte a vízszint emelkedik, ez nem a legszerencsésebb kombináció. Mintha a jégkorszak következményei és a klímaváltozás nem volna elég baj.

Link másolása

A New York-i épületek súlya is hozzájárulhat a metropolisz süllyedéséhez, állítják kutatók. Ugyanakkor ennek más okai is lehetnek, például a bolygón végbemenő változások, és az utolsó, mintegy tízezer évvel ezelőtti jégkorszak következményei.

Ha sikerül megérteni, hogy a New Yorkhoz hasonló területek miért kerülnek egyre alacsonyabbra, az segíthet felbecsülni, hogy a jövőben mekkora ezeken az áradás kockázata a klímaváltozás miatt.

Az Atlanti-óceán észak-amerikai partvidékén a vízszint a globális átlagnál máris három-négyszer gyorsabban emelkedik.

„A tengerszint-emelkedés hamarosan áradási problémákat fog okozni New Yorkban és világszerte” – figyelmeztet a tanulmány vezető szerzője, Tom Parsons geofizikus.

A jégkorszak érdekes utóhatása

GPS-adatok szerint a város déli része, Lower Manhattan évente nagyjából 2,1 milliméterrel kerül lejjebb.

Ennek egyrészt természetes oka van. Az utolsó jégkorszak leghidegebb időszakában a bolygó nagy részét vastag jégtakaró fedte. A jégtáblák alatt lévő talaj süllyedni kezdett, ez azt jelentette, hogy a földtömegek szélei magasabbra kerültek. Miután a jég elolvadt, egy idő után ez utóbbi területek indultak süllyedésnek.

Egy korábbi kutatás szerint a keleti part mentén ez a jelenség 2100-ra akár 48-150 centiméteres süppedést is okozhat.

A süllyedésnek emellett a természetes oka mellett Parsons és csapata meg akarta vizsgálni a mesterséges okok, például az ember alkotta épületek lehetséges hatását is.

Parsonsnak akkor ugrott be az ötlet, amikor meglátogatta felesége családját Belgiumban 2019-ben.

„Az antwerpeni katedrális mellett volt a szállásunk, figyeltem az épület alapzatának hatalmas köveit, és azon töprengtem, hogy hogyan hozhatták ide ezeket nagy távolságokból, majd hogyan rakták őket össze, mint egy kis hegyet. Kíváncsi lettem arra, hogy ez milyen hatással lehet a kövek alatt húzódó talajra” – idézte fel az ötlet kipattanásának körülményeit.

A baj az, ha összeadódik

A megépítés után minden épület besüllyed egy kicsit a födbe, még azok is, amelyeket keményebb kövekre építenek. Azok, amelyeket puhább talajra emelnek, természetesen jobban.

A tudósok becslése szerint New York City öt kerületének több mint egymillió (pontosan 1.084.954) épülete összesen 762 milliárd kilogramm súlyú, és egy 778 négyzetkilométeres területen helyezkedik el.

Ezután számítógépes modellt fejlesztettek ki annak megállapítására, hogy ez a súly különféle talajviszonyok esetén miképpen süllyed.

Műholdfelvételekből az derült ki, hogy a város átlagosan évente 1-2 milliméterrel kerül lejjebb. Ez megegyezett azzal az adattal, amit a számítógépes modell jelzett a jégkorszak utáni természetes mozgás következményeként.

Bizonyos városrészek azonban az adatok szerint sokkal gyorsabban süppednek, mint mások. Ez feltehetően az épületek súlya miatt van, de nem zártak ki más lehetséges indokokat sem, amelyek egyelőre még ismeretlenek.

New York tehát átlagosan csupán egy picikét süllyed évente. Parsons ugyanakkor rámutatott, hogy eközben New York körül a tengerszint emelkedés évente 1-2 milliméteres, így aztán minden milliméternyi süppedés plusz egy évet jelent a tengerszintnél.

(Forrás: Live Science, Earth's Future)


Link másolása
KÖVESS MINKET:

Ajánljuk
JÖVŐ
A Rovatból
A földi élethez nélkülözhetetlen nyolc határértékből hetet már átlépett az emberiség
Veszélyes zónában van a földi élet. Már csak a légszennyezettség esetében nem léptük át a kritikus értéket.

Link másolása

Nyolc olyan határértéket tartanak számon a tudósok, melyek nélkülözhetetlenek az élet fenntartásához, ám ezek közül már hét esetében az emberiség átlépte a határt, írja a Nature. A több mint 40 szakértőből álló Az Earth Commission nemzetközi tudóscsoport által megállapított értékek azt mutatják, mennyire biztonságosak és méltányosak a földi élet feltételei.

A határértékek az éghajlatot, a légszennyezést, a műtrágyák túlzott használata miatti eredő foszfor- és nitrogénszennyezést, a felszín alatti vízkészleteket, a felszíni édesvizeket, a beépítetlen természetet, illetve a természetes és az ember építette környezetet vizsgálja. Ezek közül egyedül a légszennyezettség az, ahol még nem léptük át az egész bolygót figyelembe véve a küszöbértéket. Egyes területeken azonban már a levegő minőségének megítélése is a káros tartományba esik.

A tanulmányban kitérnek arra, hogy amennyiben a Föld évente orvosi vizsgálaton venne részt, a doktor most azt mondaná, hogy a bolygó annyira beteg, ami már a földlakók életét is érinti.

A tudósok túlnyomó többsége egyetért abban, hogy az éghajlatváltozás az ember hibája, mely elsősorban a bolygó erőforrásainak hatalmas mértékű fogyasztása miatt következett be. Több mint 88 ezer klímaváltozásról szóló tanulmány vizsgálata során arra jutottak, hogy ezek 99,9 százaléka az emberiséget teszi felelősség a globális felmelegedés miatt.

A tudóscsoport szerint „ugrásszerű fejlődésre lenne szükség annak megértésében, hogy a jog, a gazdaság, a technológia és a globális együttműködés” hogyan tudna együttesen egy biztonságosabb és boldogabb jövőt eredményezni. Az Earth Commission tagjai szerint a helyzet megmentése érdekében létfontosságú lenne a globális hőmérséklet-emelkedés 1,5 Celsius-fokra való korlátozása és a világ ökoszisztémáinak védelme.


Link másolása
KÖVESS MINKET:

Ajánljuk

JÖVŐ
A Rovatból
Megölte emberi kezelőjét a mesterséges intelligencia vezérelte drón egy szimulációs gyakorlatban
A drón feladata az volt, hogy semmisítse meg az ellenség légvédelmi rendszerét, és mindenkit támadjon meg, aki akadályozni próbálja a misszió végrehajtásában.

Link másolása

Az amerikai hadsereg egyik szimulációs gyakorlata során a légierő mesterséges intelligencia által vezérelt drónja meggyilkolta az irányítóját, mert csak ezzel tudta biztosítani a misszió végrehajtását.

Az erről szóló információt Tucker ‘Cinco’ Hamilton ezredes, az amerikai légierő AI-tesztelésért és bevetésért felelős vezetője osztotta még májusban egy londoni szakmai konferencián.

Hamilton elmondása szerint a drón feladata az volt, hogy semmisítse meg az ellenség légvédelmi rendszerét, és támadjon meg bárkit, aki ezt megpróbálná megakadályozni.

A rendszert eredetileg úgy alakították ki, hogy az emberi kezelőé volt a döntő szó, a megerősítéses tanulás során a mesterséges intelligencia a megerősítést jelentő pontokat az ellenséges célpontok megsemmisítéséért kapta, amit az emberi kezelő többször is megakadályozott.

A drón ennek megfelelően végül arra a következtetésre jutott, hogy a kommunikációs torony ellen kell fordulnia, ahonnan a kezelője kommunikált vele.

Hamilton az eset ismertetésével arra szerette volna felhívni a figyelmet, hogy nem szabad túlzottan az MI-re bízni a gépeket a légierőnél.

(via 444, Guardian)


Link másolása
KÖVESS MINKET:

Ajánljuk

JÖVŐ
Egy évig élnek egy iszapból nyomtatott 3D-s házban, hogy teszteljék, milyen lesz a Mars-expedíció
Gőzerővel folynak a holdutazáshoz és a Mars meghódításához szükséges NASA kísérletek, amelynek eredményei a Földön is hasznosak lehetnek.

Link másolása

A tervezett újabb holdutazások és a Mars felfedezése olyan területen is találkoznak, amelyre ma még kevesen gondolnak: az építkezés. Ha megvalósul az a ma még álomnak tűnő elképzelés, hogy településeket hozzunk létre bolygónkon kívül, akkor rendelkezni kell a helyszínen a szükséges anyagokkal. Nyilvánvalóan fel sem merül az a megoldás, hogy ezeket az anyagokat a Földről szállítsák a hozzánk univerzális méretekben „közeli”, de valójában mégis távoli bolygókra. Éppen ezért már megindult az utat lerövidítő, egyben költségkímélő módszerek tanulmányozása.

Az egyik lehetséges megoldásnak a 3D-s nyomtatású olvasztott regolit látszik – írja a WIRED.

A következő napokban egy négy fős csapat érkezik a NASA houstoni Johnson űrközpontjának hangárjába, ahol egy évet töltenek el egy 3D-s nyomtatású épületben. A Mars Dune Alpha nevet viselő, 157 m2 alapterületű épület iszapból készült, színe mint a Mars talaja, a lakóterén túl még orvosi szolgálat és konyhakert is van benne. A Big-Bjarke Ingels Group építette, a 3D-s nyomtatást pedig az Icon Technology végezte.

A benne folyó kísérletek középpontjában azok a fizikai és viselkedési-egészségügyi kihívások állnak, amelyekkel az embereknek szembe kell nézniük a hosszú távú űrtartózkodás során. Egyben ez az első olyan struktúra, amelyet a NASA Holdra és Marsra szánt autonóm építési technológia-projektjéhez (MMPACT) építettek.

Amikor az ember visszatér a Holdra az Artemis-program keretében, az űrhajósok kezdetben keringő űrállomásokon, holdkompokon, vagy pedig felfújható felszíni épületekben laknak. Az MMPACT csapata azonban hosszú távon fenntartható struktúrák építésére készül.

Hogy elkerüljék a Földről való anyagszállítást, amelyhez hatalmas rakéták és óriási mennyiségű üzemanyag kellene, a Holdon található regolitot előbb masszává alakítanák, amelyet 3D-vel vékony rétegeket vagy különböző alakzatokat nyomtatnának.

Az első ilyen Földön kívüli projektet 2027-re tervezik. A küldetés során egy markolóval felszerelt robotkart kapcsolnak majd egy holdkomp oldalára, ezzel az eszközzel bányásszák ki és halmozzák fel a regolitot. A későbbi missziók félautomata exkavátorokat és más gépeket használnak majd lakóházak, utak, üvegházak, erőművek és olyan robbanástól védő pajzsok építésére, amelyek körülveszik a rakétakilövőket.

A Holdon történő 3D-s nyomtatáshoz vezető első lépés lesz, hogy lézerekkel vagy mikrohullámokkal megolvasztják a regolitot – árulta el Jennifer Edmundson, az MMPACT-csapat vezetője. Aztán lehűtik, hogy a gázok elillanhassanak, különben az anyag tele lesz lyukakkal, mint a szivacs. Ezután már ki lehet nyomtatni a kívánt formákra. Azt még nem dolgozták ki, hogy miként lehet ezeket a darabokat összeállítani. Edmundson szerint a lehető legjobban automatizálni akarják az építkezést, de nem zárható ki az emberi beavatkozás a jövőben sem a karbantartásoknál és a javításoknál.

A csapat egyik nagy feladata, hogy miként változtassa a Hold regolitját olyan erős és tartós építőanyaggá, amely képes megvédeni az emberi életet. Gondot jelenthet például, hogy a regolit jeget tartalmaz, mivel az Artemis-missziók a Hold déli pólusának közelébe indulnak.

Ráadásul a NASA-nak nem állnak rendelkezésre nagy mennyiségben holdkőzetek, hogy kísérletezzenek velük, csupán az Apollo 16 által hozott mintákkal dolgozhatnak. Tehát az MMPACT-csapatnak saját szintetikus verzióikat kell elkészítenie.

Corky Clinton, a kutatás egyik irányítója felhívja a figyelmet arra, hogy nehéz építeni a regolit geokémiai tulajdonságaira és egyberakni az apró részeket, mert meteoritokkal és más égitestekkel való ütközésekből jöttek létre több mint 4 milliárd évvel ezelőtt.

Vannak más bizonytalansági tényezők is. A Holdon sokkal kisebb a gravitáció, akár 45 percig tartó holdrengések is elképzelhetők, a déli póluson napsütésben elérheti az 54 C fokot, éjszaka viszont lehet akár mínusz 240 C fok is.

A holdpor beivódhat a gépek illeszkedéseibe és leállíthatja a hardvereket. Az Apolló-missziók idején a regolit megrongálta az űrruhákat és a belélegzett portól az űrhajósoknál szénanátha-szerű tünetek jelentkeztek.

Ugyancsak kétségeket kelthet a Mars Dune Alpha esetében, hogy az ember még soha nem hozott Mars-talajmintát a Földre, így az Iconnak szimulálnia kellett ezt az anyagot, feltételezésekre hagyatkozva, például arra, hogy bazaltban gazdag.

A struktúra 3D-s nyomtatása egy hónapot vett igénybe. Ehhez egy óriási nyomtatókart használnak, amelyen egy fúvócső vonja ki egyenletesen a lávakrétát. A struktúra alaprajzának körvonalazásával kezdik, majd jönnek a rétegek és úgy építik felfelé, mint egy agyagedényt.

A Mars Dune Alpha az Icon által épített első olyan struktúra, amelyre 3D-s nyomtatott tetőt tettek. A tető oldalai úgy találkoznak az építmény tetején, mint két hullám az óceánban. A paneleket külön nyomtatták ki, majd hozzáadták a tetőszerkezethez.

Az Icon, amelynek 57,2 millió dolláros szerződése van a NASÁ-val a holdépítkezésekkel kapcsolatos kutatásokra és fejlesztésekre, olyan épületterveket rendelt, amelyek megvédhetnek egy négy fős csapatot a meteoritoktól, holdrengésektől, sugárzásoktól és a gyors hőmérséklet-változásoktól.

Közben vákuumkamrákban folynak a kísérletek a regolit megolvasztásával. Ezek a kamrák a Hold levegő nélküli körülményeit szimulálják, és egyben lehetőséget biztosítanak a kutatóknak, hogy teszteljék az extrém hőmérsékleteket. Ballard szerint láthatóan működnek a nagyobb mechanikai rendszerek és most megpróbálják egyensúlyba hozni az anyag erejét és merevségét.

Tesztelik az olvasztáshoz használt lézerek erejét, a hűtés időtartamát és a regolit geokémiai összetételét, amely változhat lelőhelyétől függően, mert a különböző alkotóelemeinek más és más az olvadási hőfoka. Jelenleg az MMPACT-csapat külön teszteli a lézeres és a mikrohullámos olvasztást, a tervek szerint idővel megkísérlik e két technológiát együtt alkalmazni.

A vákuumkamrában a 3D-s nyomtatással is kísérleteznek, először egy leszállópálya darabjaival. Ennél az infraktruktúránál fontos szempont, hogy az űrhajó által felkavart por ne tegyen kárt olyan fontos építményekben, mint a sugárzástól védő pajzsok, garázsok, utak, és hogy a porfelhő ne zavarja a leszállási körülményeket.

A Holdra és a Marsra szánt építkezési tervek hasznosak lehet a Földön is, például alternatívákat adhatnak a betonra, amelynek egyik alkotóeleme, a cement gyártása súlyosan környezetszennyező, a globális karbonlábnyom 8%-át jelenti.

Ugyanígy haszos lehet a földi építkezéseken az a tapasztalat, amit a 3D nyomtatások során megszereznek.

A kutatók olyan építőanyagon is dolgoznak, amelyben a holdbéli regolitot vegyítenék szarvasmarha-proteinnel, mert ennek súlya a beton tizede. Az anyagot tavaly nyáron a Nemzetközi Űrállomás fedélzetén tesztelték először.

Link másolása
KÖVESS MINKET:

Ajánljuk