JÖVŐ
A Rovatból

A hazai havazások száma az utóbbi 10 évben kezdett igazán csökkenni

Országos átlagban utoljára 2013-ban volt példa az egész országot érintő nagy havazásra. A legnagyobb csökkenés az összes havas napok számában épp az eddigi leghavasabb országrészben, Északkelet-Magyarországon történt.

Link másolása

Az elmúlt 40 év alatt 15 napról 11 napra csökkent a havas napok (amikor legalább 1 cm hó hullott) éves száma, azonban a csökkenés pont az elmúlt 10 évben lett látványosabb. Országos átlagban utoljára 2013-ban volt példa az egész országot érintő nagy havazásra. A legnagyobb csökkenés az összes havas napok számában épp az eddigi leghavasabb országrészben, Északkelet-Magyarországon történt. Ha a modellszimulációkba belevesszük az emberi kényszerhatást (üvegházhatású-gázkibocsátásokat), akkor csak 50%-os bizonyossággal állíthatjuk, hogy a csökkenésért az emberi tevékenység a felelős. Ha azonban az eddigi mértékben folytatjuk a légkör üvegházgázokkal való telítését, és a pesszimista forgatókönyv érvényesül, akkor a század végére kétharmaddal csökkenhet, és évi 5 nap alá mehet országos átlagban a havas napok száma. A területi eloszlás változékonysága miatt ez azt is jelentheti, hogy egyes országrészekben akár évekig nem lesz jelentős havazás. Szabó Péter és Pongrácz Rita elemzése a Másfélfokon.

Hazánk éghajlatának szerves része a havazás, ami elsősorban a téli hónapokban jelentkezik. Különösen a fehér karácsonyok érdeklik az embereket, mivel sokak számára a kinti havas táj fokozza az ünnepi hangulatot. Az utóbbi időben, főként a hónélküli teleken gyakran felmerül, hogy régen többször esett a hó, és a nagyobb havazások sem voltak ritkák. Ezeket a szubjektív megállapításokat vajon alátámasztják-e a számok? Ha igen, akkor netalán a globális felmelegedés felelős a változásokért? Mire számíthatunk a jövőben egy fokozódó, vagy egy mérsékeltebb éghajlatváltozás esetében?

Jelen elemzésünkben a havazásokra fókuszálunk, és az összes havazásos nap mellett a jelentősebbeket (amikor 10 mm a hóként hulló csapadék, azaz ~10 cm hó hullik egy nap alatt) külön is vizsgáljuk hazánkra. Megjegyezzük, hogy a hó a hőmérsékletnél nagyobb térbeli és időbeli változékonyságú, s ezért jóval nagyobb bizonytalanságot tartalmazó változó. A feldolgozás során a múltra és a jövőre vonatkozó, legújabb éghajlati modellszimulációkat, valamint megfigyeléseken alapuló adatsorokat használtunk.

Látványos csökkenés az elmúlt 10 évben

Tekintsük először az elmúlt 40 év változásait. A havazások a 2011-2020 évtizedet megelőzően országos éves átlagban, közel változatlanul, 14-15 nap körül voltak, azonban ez napjainkra 11 napra csökkent. A legtöbb havas napunk általában észak-északkeleten fordul elő, ugyanakkor itt történt a legnagyobb mértékű változás is az elmúlt 40 év alatt (1.a ábra): az ország északi-északkeleti részén jelentősen, a harmadával csökkent a havas napok száma, azonban a nagy évek közötti változékonyság miatt csak kis területre korlátozódik a statisztikai értelemben is igazolható szignifikáns változás. Ezzel szemben délen alig történt változás.

A jelentős havazásokból országos átlagban jóval kevesebb van, néhány évben egyáltalán nem fordult elő az országot érintő nagy havazás. Ilyen nagy havazás nélküli év legutóbb 2011-ben volt.

Ezért ebben az esetben nem éves átlagokról érdemes beszélni, hanem többéves összegekről – az idősorok ábráját kivéve ilyeneket mutatunk be a jelen tanulmányban is. 1981-től nézve az adatokat, a legtöbb nagy havazás 1999-ben fordult elő: országos átlagban több mint 3 nap. Ami a területi eloszlást illeti, a 10 centimétert meghaladó havazások leginkább az ország délnyugati-nyugati részén fordultak elő, ugyanakkor az ország északnyugati-nyugati részén találjuk a szignifikánsan, az utóbbi két évtizedre a felére csökkenő értékeket is (1.b ábra). Ezzel szemben az ország legkeletibb részén még nagyon gyenge növekedést is találunk.

1. ábra: A havas napok átlagos évi számának trendje (a) és a jelentős havazások számának változása (b) a megfigyelések szerint az 1981-2020 időszakban. Szürke pöttyözés jelöli a statisztikailag szignifikánsan változó területeket. A szerzők ábrája.

Ha kicsit korábbra is visszatekintünk, és 1960-tól indulva korrigált modellszimulációk eredményeit vizsgáljuk, az összes havas nap esetében a megfigyeléseken alapuló eredményeknél kissé gyengébb trendet kapunk, mely országos átlagban szintén nem szignifikáns (2. ábra szürke sáv). A jelentős havazásoknál hasonló következtetésre jutunk (3. ábra szürke sáv), azaz

az elmúlt 60 évben legfeljebb csak az utóbbi 10 évben támasztják alá a számok azt a szubjektív észlelést, miszerint kevesebbszer fordul elő havazás, illetve nagy havazás is.

Az emberi tevékenység miatt csökken a havas napok száma?

Ennek megválaszolásához összehasonlítottuk az elmúlt évtizedekre vonatkozóan azokat az éghajlati szimulációkat, melyek csak természetes kényszereket vesznek figyelembe, és azokat, melyek a “valóságot”, azaz az emberi tevékenység hatására növekvő üvegházgáz-koncentrációt is tartalmazzák. A megfigyelésekhez hasonló gyengén negatív trendet az emberi tevékenységgel meghajtott szimulációk viszonylag jól visszaadják az összes havazás és a jelentősebb havazások számában egyaránt, viszont a természetes kényszereket tekintő szimulációktól statisztikailag eltérő trendet csupán a rendelkezésre álló modellszimulációk fele eredményez.

Tehát 50%-os valószínűséget rendelhetünk ahhoz az állításhoz, hogy a havazások megfigyelt csökkenéséért az emberi tevékenység a felelős - ami lényegében azt jelenti, hogy az eddigi változásokért még nem az emberiség okolható.

Ez azonban a jövőben változni fog, ha így folytatjuk

A havazások alakulását alapvetően két tényező befolyásolja: az egyik az azok számát csökkentő téli felmelegedés, míg a másik a téli csapadék várható növekedése. A havazások e két ellenkező hatás eredőjeként fognak változni, és úgy tűnik, hogy

a melegedés erőteljesebben fog hatni, ugyanakkor a téli nagyobb csapadékösszegek miatt egy-egy jelentősebb havazásra továbbra is számítanunk kell.

A klímamodellek optimista jövőképe szerint (vagyis amennyiben jelentősen csökkentjük a kibocsátásainkat) a század végéig még így is mérsékelt csökkenésre számíthatunk a havazások számában (2. ábra). A pesszimista, ún. RCP8.5 forgatókönyv szerint (vagyis ha a jelenlegi ütemben folytatjuk a kibocsátásokat) a változás jóval nagyobb lesz, és

5 nap alatti országos éves átlagok lehetnek majd a század vége felé, mely az összes havazásos napban kétharmaddal való csökkenést jelent a 21. század elejéhez képest.

Az ország egyes területein a század végén akár évekig sem lesz hó

A jelentős havazásokból országos átlagban jelenleg is kevés van évente, azonban úgy tűnik, hogy az optimista forgatókönyvet követve nagy változékonyság mellett előfordulnak majd nagy kiterjedésű és nagy mennyiségű havazást hozó évek (3. ábra), hiszen a növekvő téli csapadék egy mérsékeltebb melegedéssel társul. A pesszimista jövőkép szerint a jelentősebb felmelegedést már nem tudja kompenzálni a növekvő csapadék, és statisztikailag is szignifikánsan csökken a jelentős havazások országos száma a század végére,

ami azt jelenti, hogy az ország egyes területein akár évekre nélkülözhetjük majd a jelentős havazásokat.

2. ábra: A havas napok gyakoriságának az 1981-2020 időszakban megfigyelt (kék), az 1960-2005 időszakban, historikus kényszerekkel szimulált (szürke), illetve az optimistább RCP4.5 (narancs) és a pesszimista RCP8.5 (piros) forgatókönyvet a 2006-2100 időszakban követő jövőbeli szimulációk éves idősorai Magyarországra. A szürke sáv 5 globális szimulációt, míg a narancs és a piros sáv 6-6 regionális szimulációt tartalmaz, a vastagított vonalak a szimulációk átlagát jelölik. A szürke és kék vonal trendje nem szignifikáns, míg a narancs és a piros vonal teljes időszakon vett szignifikáns trendje rendre -8,2 nap, illetve -11,4 nap. A szerzők ábrája.

3. ábra: A jelentős havazások gyakoriságának az 1981-2020 időszakban megfigyelt (kék), az 1960-2005 időszakban, historikus kényszerekkel szimulált (szürke), illetve az optimistább RCP4.5 (narancs) és a pesszimista RCP8.5 (piros) forgatókönyvet a 2006-2100 időszakban követő jövőbeli szimulációk éves idősorai Magyarországra. A szürke sáv 5 globális szimulációt, míg a narancs és a piros sáv 6-6 regionális szimulációt tartalmaz, a vastagított vonalak a szimulációk átlagát jelölik. Egyedül a piros vonal trendje szignifikáns. A szerzők ábrája.

A területi kitettséget illetően azt állapíthatjuk meg, hogy a következő 20 évben az országban sehol sem fog a jelenlegihez, a 2001-2020-ban átlagos 13 naphoz képest változni a havazások száma, és 2040-től is inkább csak a pesszimista forgatókönyv szerint, északkeleten várható 5 nap feletti csökkenés az átlagos éves gyakoriságban (4. ábra).

Az emberi tevékenység hatása ezután jelentkezik erőteljesebben. A különbség a század végére növekszik igazán a két jövőkép között.

Olyannyira, hogy ami a század közepére várható a pesszimista forgatókönyv szerint, azt inkább csak a század végére jelzik a modellszimulációk az optimistább jövőképet követve. A pesszimista forgatókönyv szerint 2081-2100-ra az Északi-középhegységben és a Bakonyban – ahol egyébként is a legtöbbször fordult elő havazás – évente átlagosan 10-15 nappal kevesebb havazásra számíthatunk.

4. ábra: A havas napok átlagos évi számának változása 2021-2040, 2041-2060, 2061-2080 és 2081-2100-ra az optimistább RCP4.5 és pesszimista RCP8.5 forgatókönyvet figyelembe vevő 6-6 szimuláció átlagára. Referencia-időszak: 2001-2020, amely alatt a megfigyelések országos évi átlaga: 13 nap. A szerzők ábrája.

A jelentős havazásokra vonatkozó eredményeket a kis esetszám miatt továbbra sem éves átlagban, hanem a teljes időszakra összegezve közöljük. Itt a klímamodellek azt jelzik, hogy a következő 40 évben a délnyugati és az északkeleti határvidéken a nagy havazások számában csökkenésre számíthatunk, viszont az ország nagy részén nem várható változás, sőt, a Dunántúl északi részén és a Bükkben még kisebb növekedésre is számíthatunk (5. ábra).

Várhatóan azért, mert a domborzat miatt itt alacsonyabb hőmérsékletekkel társul majd a téli növekvő csapadékhajlam. Hasonló területi eloszlásra számíthatunk a század második felében: az ország középső részén nem várható a jelentős havazások gyakoriságában jelentős változás, azonban mind a délnyugati, mind az északkeleti határvidéken a csökkenés kissé tovább erősödik. Az emberi tevékenység hatása igazán csak a század végére jelentkezik: ekkor a pesszimista forgatókönyv szerint vett szimulációkban a délnyugati területeken (ahol egyébként a legtöbb nagy havazás fordult elő 2001-2020-ban) 10-15 nappal – azaz kb. 60%-kal – is csökkenhet a 20 év alatt előforduló nagy havazások száma. A legtöbb jelentős havazás végül így a Bakonyban várható.

Az optimista jövőképet követve egyáltalán nem várható ilyen drasztikus csökkenés délnyugaton, és délkeleten továbbra is csak néhány napon fordulhat elő jelentősebb havazás.

5. ábra: A jelentős havazások összes számának változása 2021-2040, 2041-2060, 2061-2080 és 2081-2100-ra az optimistább RCP4.5 és pesszimista RCP8.5 forgatókönyvet figyelembe vevő 6-6 szimuláció átlagára. Referencia-időszak: 2001-2020, amely alatt összesítve a megfigyelések országos átlagos száma: 12 nap. A szerzők ábrája.

A cikkünk elején megfogalmazott kérdéseket tekintve ugyan a múltra vonatkozóan nem jelenthetjük ki, hogy az emberi tevékenység okozta akár az összes, akár a jelentősebb havazási napok országos csökkenését, ugyanakkor elsősorban a legutóbbi évtizedben, egyes területeken már jelentkezett szignifikáns csökkenés, tehát ott helyes lehet a szubjektív megítélésünk.

Amennyiben az előttünk álló évtizedekben a kibocsátásokkal tovább fokozzuk a globális felmelegedést, akkor a havazások előfordulási gyakoriságában további erőteljesebb csökkenésre kell számítanunk az évszázad végéig. Egyes térségekben akár évekre elbúcsúzhatunk a havazástól.

Ha viszont gyorsan megkezdjük az antropogén kibocsátás mérséklését, a zöldítést, ezzel pedig elérjük a koncentráció-változás lassulását (2100-ra akár a megállítását is), akkor a havazások esetén a várható csökkenés csak kisebb mértékű lehet. Az eddigi trendek visszafordulása csak abban az esetben lehetséges, ha az emberi kényszerhatást minél hamarabb és minél gyorsabban visszafogjuk, így unokáink is élvezhetik majd a havas táj szépségét.

Link másolása
KÖVESS MINKET:

Címlapról ajánljuk


JÖVŐ
A Rovatból
New York a saját súlya miatt is süllyed, mert a rajta lévő felhőkarcolók annyira nehezek
Manhattan süllyed, körülötte a vízszint emelkedik, ez nem a legszerencsésebb kombináció. Mintha a jégkorszak következményei és a klímaváltozás nem volna elég baj.

Link másolása

A New York-i épületek súlya is hozzájárulhat a metropolisz süllyedéséhez, állítják kutatók. Ugyanakkor ennek más okai is lehetnek, például a bolygón végbemenő változások, és az utolsó, mintegy tízezer évvel ezelőtti jégkorszak következményei.

Ha sikerül megérteni, hogy a New Yorkhoz hasonló területek miért kerülnek egyre alacsonyabbra, az segíthet felbecsülni, hogy a jövőben mekkora ezeken az áradás kockázata a klímaváltozás miatt.

Az Atlanti-óceán észak-amerikai partvidékén a vízszint a globális átlagnál máris három-négyszer gyorsabban emelkedik.

„A tengerszint-emelkedés hamarosan áradási problémákat fog okozni New Yorkban és világszerte” – figyelmeztet a tanulmány vezető szerzője, Tom Parsons geofizikus.

A jégkorszak érdekes utóhatása

GPS-adatok szerint a város déli része, Lower Manhattan évente nagyjából 2,1 milliméterrel kerül lejjebb.

Ennek egyrészt természetes oka van. Az utolsó jégkorszak leghidegebb időszakában a bolygó nagy részét vastag jégtakaró fedte. A jégtáblák alatt lévő talaj süllyedni kezdett, ez azt jelentette, hogy a földtömegek szélei magasabbra kerültek. Miután a jég elolvadt, egy idő után ez utóbbi területek indultak süllyedésnek.

Egy korábbi kutatás szerint a keleti part mentén ez a jelenség 2100-ra akár 48-150 centiméteres süppedést is okozhat.

A süllyedésnek emellett a természetes oka mellett Parsons és csapata meg akarta vizsgálni a mesterséges okok, például az ember alkotta épületek lehetséges hatását is.

Parsonsnak akkor ugrott be az ötlet, amikor meglátogatta felesége családját Belgiumban 2019-ben.

„Az antwerpeni katedrális mellett volt a szállásunk, figyeltem az épület alapzatának hatalmas köveit, és azon töprengtem, hogy hogyan hozhatták ide ezeket nagy távolságokból, majd hogyan rakták őket össze, mint egy kis hegyet. Kíváncsi lettem arra, hogy ez milyen hatással lehet a kövek alatt húzódó talajra” – idézte fel az ötlet kipattanásának körülményeit.

A baj az, ha összeadódik

A megépítés után minden épület besüllyed egy kicsit a födbe, még azok is, amelyeket keményebb kövekre építenek. Azok, amelyeket puhább talajra emelnek, természetesen jobban.

A tudósok becslése szerint New York City öt kerületének több mint egymillió (pontosan 1.084.954) épülete összesen 762 milliárd kilogramm súlyú, és egy 778 négyzetkilométeres területen helyezkedik el.

Ezután számítógépes modellt fejlesztettek ki annak megállapítására, hogy ez a súly különféle talajviszonyok esetén miképpen süllyed.

Műholdfelvételekből az derült ki, hogy a város átlagosan évente 1-2 milliméterrel kerül lejjebb. Ez megegyezett azzal az adattal, amit a számítógépes modell jelzett a jégkorszak utáni természetes mozgás következményeként.

Bizonyos városrészek azonban az adatok szerint sokkal gyorsabban süppednek, mint mások. Ez feltehetően az épületek súlya miatt van, de nem zártak ki más lehetséges indokokat sem, amelyek egyelőre még ismeretlenek.

New York tehát átlagosan csupán egy picikét süllyed évente. Parsons ugyanakkor rámutatott, hogy eközben New York körül a tengerszint emelkedés évente 1-2 milliméteres, így aztán minden milliméternyi süppedés plusz egy évet jelent a tengerszintnél.

(Forrás: Live Science, Earth's Future)


Link másolása
KÖVESS MINKET:

Ajánljuk
JÖVŐ
A Rovatból
A földi élethez nélkülözhetetlen nyolc határértékből hetet már átlépett az emberiség
Veszélyes zónában van a földi élet. Már csak a légszennyezettség esetében nem léptük át a kritikus értéket.

Link másolása

Nyolc olyan határértéket tartanak számon a tudósok, melyek nélkülözhetetlenek az élet fenntartásához, ám ezek közül már hét esetében az emberiség átlépte a határt, írja a Nature. A több mint 40 szakértőből álló Az Earth Commission nemzetközi tudóscsoport által megállapított értékek azt mutatják, mennyire biztonságosak és méltányosak a földi élet feltételei.

A határértékek az éghajlatot, a légszennyezést, a műtrágyák túlzott használata miatti eredő foszfor- és nitrogénszennyezést, a felszín alatti vízkészleteket, a felszíni édesvizeket, a beépítetlen természetet, illetve a természetes és az ember építette környezetet vizsgálja. Ezek közül egyedül a légszennyezettség az, ahol még nem léptük át az egész bolygót figyelembe véve a küszöbértéket. Egyes területeken azonban már a levegő minőségének megítélése is a káros tartományba esik.

A tanulmányban kitérnek arra, hogy amennyiben a Föld évente orvosi vizsgálaton venne részt, a doktor most azt mondaná, hogy a bolygó annyira beteg, ami már a földlakók életét is érinti.

A tudósok túlnyomó többsége egyetért abban, hogy az éghajlatváltozás az ember hibája, mely elsősorban a bolygó erőforrásainak hatalmas mértékű fogyasztása miatt következett be. Több mint 88 ezer klímaváltozásról szóló tanulmány vizsgálata során arra jutottak, hogy ezek 99,9 százaléka az emberiséget teszi felelősség a globális felmelegedés miatt.

A tudóscsoport szerint „ugrásszerű fejlődésre lenne szükség annak megértésében, hogy a jog, a gazdaság, a technológia és a globális együttműködés” hogyan tudna együttesen egy biztonságosabb és boldogabb jövőt eredményezni. Az Earth Commission tagjai szerint a helyzet megmentése érdekében létfontosságú lenne a globális hőmérséklet-emelkedés 1,5 Celsius-fokra való korlátozása és a világ ökoszisztémáinak védelme.


Link másolása
KÖVESS MINKET:

Ajánljuk

JÖVŐ
A Rovatból
Megölte emberi kezelőjét a mesterséges intelligencia vezérelte drón egy szimulációs gyakorlatban
A drón feladata az volt, hogy semmisítse meg az ellenség légvédelmi rendszerét, és mindenkit támadjon meg, aki akadályozni próbálja a misszió végrehajtásában.

Link másolása

Az amerikai hadsereg egyik szimulációs gyakorlata során a légierő mesterséges intelligencia által vezérelt drónja meggyilkolta az irányítóját, mert csak ezzel tudta biztosítani a misszió végrehajtását.

Az erről szóló információt Tucker ‘Cinco’ Hamilton ezredes, az amerikai légierő AI-tesztelésért és bevetésért felelős vezetője osztotta még májusban egy londoni szakmai konferencián.

Hamilton elmondása szerint a drón feladata az volt, hogy semmisítse meg az ellenség légvédelmi rendszerét, és támadjon meg bárkit, aki ezt megpróbálná megakadályozni.

A rendszert eredetileg úgy alakították ki, hogy az emberi kezelőé volt a döntő szó, a megerősítéses tanulás során a mesterséges intelligencia a megerősítést jelentő pontokat az ellenséges célpontok megsemmisítéséért kapta, amit az emberi kezelő többször is megakadályozott.

A drón ennek megfelelően végül arra a következtetésre jutott, hogy a kommunikációs torony ellen kell fordulnia, ahonnan a kezelője kommunikált vele.

Hamilton az eset ismertetésével arra szerette volna felhívni a figyelmet, hogy nem szabad túlzottan az MI-re bízni a gépeket a légierőnél.

(via 444, Guardian)


Link másolása
KÖVESS MINKET:

Ajánljuk

JÖVŐ
Egy évig élnek egy iszapból nyomtatott 3D-s házban, hogy teszteljék, milyen lesz a Mars-expedíció
Gőzerővel folynak a holdutazáshoz és a Mars meghódításához szükséges NASA kísérletek, amelynek eredményei a Földön is hasznosak lehetnek.

Link másolása

A tervezett újabb holdutazások és a Mars felfedezése olyan területen is találkoznak, amelyre ma még kevesen gondolnak: az építkezés. Ha megvalósul az a ma még álomnak tűnő elképzelés, hogy településeket hozzunk létre bolygónkon kívül, akkor rendelkezni kell a helyszínen a szükséges anyagokkal. Nyilvánvalóan fel sem merül az a megoldás, hogy ezeket az anyagokat a Földről szállítsák a hozzánk univerzális méretekben „közeli”, de valójában mégis távoli bolygókra. Éppen ezért már megindult az utat lerövidítő, egyben költségkímélő módszerek tanulmányozása.

Az egyik lehetséges megoldásnak a 3D-s nyomtatású olvasztott regolit látszik – írja a WIRED.

A következő napokban egy négy fős csapat érkezik a NASA houstoni Johnson űrközpontjának hangárjába, ahol egy évet töltenek el egy 3D-s nyomtatású épületben. A Mars Dune Alpha nevet viselő, 157 m2 alapterületű épület iszapból készült, színe mint a Mars talaja, a lakóterén túl még orvosi szolgálat és konyhakert is van benne. A Big-Bjarke Ingels Group építette, a 3D-s nyomtatást pedig az Icon Technology végezte.

A benne folyó kísérletek középpontjában azok a fizikai és viselkedési-egészségügyi kihívások állnak, amelyekkel az embereknek szembe kell nézniük a hosszú távú űrtartózkodás során. Egyben ez az első olyan struktúra, amelyet a NASA Holdra és Marsra szánt autonóm építési technológia-projektjéhez (MMPACT) építettek.

Amikor az ember visszatér a Holdra az Artemis-program keretében, az űrhajósok kezdetben keringő űrállomásokon, holdkompokon, vagy pedig felfújható felszíni épületekben laknak. Az MMPACT csapata azonban hosszú távon fenntartható struktúrák építésére készül.

Hogy elkerüljék a Földről való anyagszállítást, amelyhez hatalmas rakéták és óriási mennyiségű üzemanyag kellene, a Holdon található regolitot előbb masszává alakítanák, amelyet 3D-vel vékony rétegeket vagy különböző alakzatokat nyomtatnának.

Az első ilyen Földön kívüli projektet 2027-re tervezik. A küldetés során egy markolóval felszerelt robotkart kapcsolnak majd egy holdkomp oldalára, ezzel az eszközzel bányásszák ki és halmozzák fel a regolitot. A későbbi missziók félautomata exkavátorokat és más gépeket használnak majd lakóházak, utak, üvegházak, erőművek és olyan robbanástól védő pajzsok építésére, amelyek körülveszik a rakétakilövőket.

A Holdon történő 3D-s nyomtatáshoz vezető első lépés lesz, hogy lézerekkel vagy mikrohullámokkal megolvasztják a regolitot – árulta el Jennifer Edmundson, az MMPACT-csapat vezetője. Aztán lehűtik, hogy a gázok elillanhassanak, különben az anyag tele lesz lyukakkal, mint a szivacs. Ezután már ki lehet nyomtatni a kívánt formákra. Azt még nem dolgozták ki, hogy miként lehet ezeket a darabokat összeállítani. Edmundson szerint a lehető legjobban automatizálni akarják az építkezést, de nem zárható ki az emberi beavatkozás a jövőben sem a karbantartásoknál és a javításoknál.

A csapat egyik nagy feladata, hogy miként változtassa a Hold regolitját olyan erős és tartós építőanyaggá, amely képes megvédeni az emberi életet. Gondot jelenthet például, hogy a regolit jeget tartalmaz, mivel az Artemis-missziók a Hold déli pólusának közelébe indulnak.

Ráadásul a NASA-nak nem állnak rendelkezésre nagy mennyiségben holdkőzetek, hogy kísérletezzenek velük, csupán az Apollo 16 által hozott mintákkal dolgozhatnak. Tehát az MMPACT-csapatnak saját szintetikus verzióikat kell elkészítenie.

Corky Clinton, a kutatás egyik irányítója felhívja a figyelmet arra, hogy nehéz építeni a regolit geokémiai tulajdonságaira és egyberakni az apró részeket, mert meteoritokkal és más égitestekkel való ütközésekből jöttek létre több mint 4 milliárd évvel ezelőtt.

Vannak más bizonytalansági tényezők is. A Holdon sokkal kisebb a gravitáció, akár 45 percig tartó holdrengések is elképzelhetők, a déli póluson napsütésben elérheti az 54 C fokot, éjszaka viszont lehet akár mínusz 240 C fok is.

A holdpor beivódhat a gépek illeszkedéseibe és leállíthatja a hardvereket. Az Apolló-missziók idején a regolit megrongálta az űrruhákat és a belélegzett portól az űrhajósoknál szénanátha-szerű tünetek jelentkeztek.

Ugyancsak kétségeket kelthet a Mars Dune Alpha esetében, hogy az ember még soha nem hozott Mars-talajmintát a Földre, így az Iconnak szimulálnia kellett ezt az anyagot, feltételezésekre hagyatkozva, például arra, hogy bazaltban gazdag.

A struktúra 3D-s nyomtatása egy hónapot vett igénybe. Ehhez egy óriási nyomtatókart használnak, amelyen egy fúvócső vonja ki egyenletesen a lávakrétát. A struktúra alaprajzának körvonalazásával kezdik, majd jönnek a rétegek és úgy építik felfelé, mint egy agyagedényt.

A Mars Dune Alpha az Icon által épített első olyan struktúra, amelyre 3D-s nyomtatott tetőt tettek. A tető oldalai úgy találkoznak az építmény tetején, mint két hullám az óceánban. A paneleket külön nyomtatták ki, majd hozzáadták a tetőszerkezethez.

Az Icon, amelynek 57,2 millió dolláros szerződése van a NASÁ-val a holdépítkezésekkel kapcsolatos kutatásokra és fejlesztésekre, olyan épületterveket rendelt, amelyek megvédhetnek egy négy fős csapatot a meteoritoktól, holdrengésektől, sugárzásoktól és a gyors hőmérséklet-változásoktól.

Közben vákuumkamrákban folynak a kísérletek a regolit megolvasztásával. Ezek a kamrák a Hold levegő nélküli körülményeit szimulálják, és egyben lehetőséget biztosítanak a kutatóknak, hogy teszteljék az extrém hőmérsékleteket. Ballard szerint láthatóan működnek a nagyobb mechanikai rendszerek és most megpróbálják egyensúlyba hozni az anyag erejét és merevségét.

Tesztelik az olvasztáshoz használt lézerek erejét, a hűtés időtartamát és a regolit geokémiai összetételét, amely változhat lelőhelyétől függően, mert a különböző alkotóelemeinek más és más az olvadási hőfoka. Jelenleg az MMPACT-csapat külön teszteli a lézeres és a mikrohullámos olvasztást, a tervek szerint idővel megkísérlik e két technológiát együtt alkalmazni.

A vákuumkamrában a 3D-s nyomtatással is kísérleteznek, először egy leszállópálya darabjaival. Ennél az infraktruktúránál fontos szempont, hogy az űrhajó által felkavart por ne tegyen kárt olyan fontos építményekben, mint a sugárzástól védő pajzsok, garázsok, utak, és hogy a porfelhő ne zavarja a leszállási körülményeket.

A Holdra és a Marsra szánt építkezési tervek hasznosak lehet a Földön is, például alternatívákat adhatnak a betonra, amelynek egyik alkotóeleme, a cement gyártása súlyosan környezetszennyező, a globális karbonlábnyom 8%-át jelenti.

Ugyanígy haszos lehet a földi építkezéseken az a tapasztalat, amit a 3D nyomtatások során megszereznek.

A kutatók olyan építőanyagon is dolgoznak, amelyben a holdbéli regolitot vegyítenék szarvasmarha-proteinnel, mert ennek súlya a beton tizede. Az anyagot tavaly nyáron a Nemzetközi Űrállomás fedélzetén tesztelték először.

Link másolása
KÖVESS MINKET:

Ajánljuk